Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{\sqrt{x}-3}{2}\) có giá trị nguyên nên \(\left(\sqrt{x}-3\right)⋮2.\)
Suy ra \(x\) là số chính phương lẻ.
Vì \(x< 30\) nên \(x\in\left\{1^2;3^2;5^2\right\}\)hay \(x\in\left\{1;9;25\right\}.\)
Ta có căn(x + 5) + 2/11 >= 2/11 (vì căn (x+5) >= 0)
Vậy A đạt giá trị nhỏ nhất là 2/11 khi và chỉ khi x = -5
Ta có : 3/19 - 3.căn(x - 2) <= 3/19 ( vì -3.căn(x-2) <= 0)
Vậy B đạt giá trị lớn nhất là 3/19 khi và chỉ khi x = 5
C = (căn - 3)/2 có giá trị nguyên nên (căn - 3) chia hết cho 2
Suy ra x là số chính phương lẻ
Vì x < 50 nên x thuộc { 1^2;3^2;5^2;7^2} hay x thuộc {1;9;25;49}
Để A nguyên thì \(\sqrt{x}-3⋮2\)
Do x < 30 nên \(\sqrt{x}< 6\) => \(\sqrt{x}-3< 3\)
Lại có: \(\sqrt{x}-3\ge-3\) do \(\sqrt{x}\ge0\)
=> \(\sqrt{x}-3\in\left\{2;0;-2\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{5;3;1\right\}\)
\(\Rightarrow x\in\left\{25;9;1\right\}\)
Vậy ...
Để A nguyên thì \(\sqrt{x-3}\) chia hết cho 2
Vì x < 30 => x - 3 < 27 => \(\sqrt{x-3}<\sqrt{27}<6\)
=> \(\sqrt{x-3}=0;2;4\)
+) \(\sqrt{x-3}=0\) => x - 3 = 0 => x = 3 ( Chọn)
+) \(\sqrt{x-3}=2\) => x - 3 = 4 => x = 7 ( chọn)
+) \(\sqrt{x-3}=4\) => x - 3 = 16 => x = 19 ( chọn)
Vậy...
a)2(x+y)=2(z+x)
=>\(x+y=z+x\)
=>y=z
=>\(\frac{y-z}{5}=\frac{0}{5}=0\)
5(y+z)=2(z+x)
5y+5z=2z+2x
mà y=z(cmt)
nên 5y+5y-2y=2x
8y=2x
x=4y
=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)
=>ko thỏa mãn đề bài
a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì x−y4=y−z5
Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)
\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)
\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)
\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)
\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)
\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)