\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2018

a) ĐKXĐ :

\(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)

b) Với \(a\ge0\) và \(a\ne4\)

\(A=\frac{\sqrt{a}+2}{\sqrt{a}+3}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)

\(=\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{5}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}-\frac{\sqrt{a}+3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-4-5-\sqrt{a}-3}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{a-\sqrt{a}-12}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-4\right)}{\left(\sqrt{a}+3\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}-4}{\sqrt{a}-2}\)

Để A > 2

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}>2\)

Ta có :

\(\frac{\sqrt{a}-4}{\sqrt{a}-2}-2\)

\(=\frac{\sqrt{a}-4-2\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\)

\(=\frac{\sqrt{a}-4-2\sqrt{a}+4}{\sqrt{a}-2}\)

\(\)\(=\frac{-\sqrt{a}}{\sqrt{a}-2}\)

+) \(-\sqrt{a}< 0\forall a\)  \(\Rightarrow a>0\)

+) \(\sqrt{a}-2< 0\)   \(\Leftrightarrow a< 4\)

Vậy để A > 2 thì 0 < a < 4

c) Để A = 5

thì \(\frac{\sqrt{a}-4}{\sqrt{a}-2}=5\)

\(\frac{\left(\sqrt{a}-4\right)-5\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)}=0\)

\(\frac{\sqrt{a}-4-5\sqrt{a}+10}{\sqrt{a}-2}=0\)

\(\Rightarrow-4\sqrt{a}+6=0\)

\(\Rightarrow a=\frac{9}{4}\)( TMĐKXĐ )

Vậy để A = 5 thì a = 9/4

1 tháng 6 2018

a, A xđ <=> \(\hept{\begin{cases}\sqrt{a}+3\ne0\\a+\sqrt{a}-6\ne0\\2-\sqrt{a}\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}a\ge0\\a\ne2\\a\ne4\end{cases}};a\ne-3\)-3

b, rút gọn: A=\(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)để A> 2 <=> \(\frac{\sqrt{a}-4}{\sqrt{a}-2}\)>2 <=> 1+\(\frac{-2}{\sqrt{a}-2}\)>2 <=> \(\frac{\sqrt{a}}{2-\sqrt{a}}\)>0

mà a\(\ge\)0 <=> \(\sqrt{a}\ge0\)=> \(2-\sqrt{a}\)>0 <=> a<4 

kết hợp với điều kiện, ta được: \(0\le a< 4;a\ne2\)

c, để A = 5 thì \(\frac{-2}{\sqrt{a}-2}\)+1=5 

<=>  \(\frac{-2}{\sqrt{a}-2}\)=4 

<=> \(a=\frac{9}{4}\)(t/m)

KL..............

Bài 2: 

\(\Leftrightarrow3\sqrt{x+5}-2\sqrt{x+5}=7\)

\(\Leftrightarrow\sqrt{x+5}=7\)

=>x+5=25

hay x=18

đè hinh như là 6\(\sqrt{x}\) nhi bạn

9 tháng 11 2019

\(A=\frac{15\sqrt{x}-11}{x-\sqrt{x}+3\sqrt{x}-3}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11}{\left(\sqrt{x}+3\right)(\sqrt{x}-1)}-\frac{3\sqrt{x}-2}{\sqrt{x}-1}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)

\(=\frac{45\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{37\sqrt{x}-5x-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

7 tháng 8 2016

Bạn có thể đăng từng bài k như thế nhìn đã sợ ai làm

7 tháng 8 2016

1)đặt nhân tử chung quy đồng là xong

2)phân tích x+2cănx-3=(1-cănx)(3+cănx)

3)2a+căn a đặt căn a ra r rút gọn

14 tháng 7 2016

1/ 

a/ ĐKXĐ: \(x\ge0\) và \(x\ne\frac{1}{9}\)

 b/  \(P=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)-\left(3\sqrt{x}-1\right)+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\left(\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\right)\)

    \(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}\)

      \(=\frac{3x+3\sqrt{x}}{3\sqrt{x}-1}.\frac{1}{3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c/ \(P=\frac{6}{5}\Rightarrow\frac{x+\sqrt{x}}{3\sqrt{x}-1}=\frac{6}{5}\Rightarrow6\left(3\sqrt{x}-1\right)=5\left(x+\sqrt{x}\right)\)

                  \(\Rightarrow5x-13\sqrt{x}+6=0\Rightarrow\left(5\sqrt{x}-3\right)\left(\sqrt{x}-2\right)=0\)

                   \(\Rightarrow\orbr{\begin{cases}\sqrt{x}=\frac{3}{5}\\\sqrt{x}=2\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}}\)

                                                      Vậy x = 9/25 , x = 4

14 tháng 7 2016

1) a) ĐKXĐ :  \(0\le x\ne\frac{1}{9}\)

b) \(P=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)\)

\(=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}\)

\(=\frac{3x-2\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3x+3\sqrt{x}}{3\left(3\sqrt{x}-1\right)}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)

c) \(P=\frac{6}{5}\Leftrightarrow18\sqrt{x}-6=5x+5\sqrt{x}\Leftrightarrow5x-13\sqrt{x}+6=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{9}{25}\\x=4\end{cases}}\)