Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi d là ƯCLN(12n + 1; 30n + 2) Nên ta có :
12n + 1 ⋮ d và 30n + 2 ⋮ d
=> 5(12n + 1) ⋮ d và 2(30n + 2) ⋮ d
=> 60n + 5 ⋮ d và 60n + 4 ⋮ d
=> (60n + 5) - (60n + 4) ⋮ d
=> 1 ⋮ d => d = 1
Vì ƯCLN(12n + 1; 30n + 2) = 1 nên (12n + 1)/(30n + 2) tối giản ( đpcm )
1) Gọi \(d=ƯCLN\left(2n+1;3n+2\right)\)
\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\3n+2⋮d\end{cases}}\Rightarrow\hept{\begin{cases}3\left(2n+1\right)⋮d\\2\left(3n+2\right)⋮d\end{cases}}\)
\(\Rightarrow2\left(3n+2\right)-3\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Rightarrow2n+1\)và\(3n+2\)là nguyên tố cùng nhau
\(\Rightarrow\frac{2n+1}{3n+2}\)là phân số tối giản\(\left(đpcm\right)\)
câu 1 :
gọi d = ƯCLN ( 2n + 1; 3n +2 )
=> 2n + 1 chia hết cho d => 3 ( 2n +1 ) chia hết cho d
3n + 2 chia hết cho d => 2 ( 3n + 2 ) chia hết cho d
ta có : 3 ( 3n + 2 ) - [ 2 ( 2n + 21) ] hay 6n + 4 - [ 6n + 3 ] chia hết cho d
=> 1 chia hết cho d -> 2n +1 và 3n + 2 là hai số nguyên tố cùng nhau
=> \(\frac{2n+1}{3n+2}\) là phân số tối giản
Ta có: \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}=\frac{5n+2}{6n^2+5n+1}\)
Giả sử d là ước chung lớn nhất của \(\left(5n+2\right);\left(6n^2+5n+1\right)\)
\(\Rightarrow\hept{\begin{cases}6.\left(5n+2\right)^2⋮d\\25.\left(6n^2+5n+1\right)⋮d\end{cases}}\)
\(\Rightarrow25\left(6n^2+5n+1\right)-6\left(5n+2\right)^2⋮d\)
\(\Rightarrow5n+1⋮d\)
\(\Rightarrow\left(5n+2\right)-\left(5n+1\right)=1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\frac{5n+2}{\left(3n+1\right)\left(2n+1\right)}\)là phân số tối giản
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N
Bài 4:
=>(x-5)*3/10=1/5x+5
=>3/10x-3/2=1/5x+5
=>1/10x=5+3/2=6,5
=>0,1x=6,5
=>x=65
gọi ƯCLN cũa tử và mẫu cũa phân số A là d(d \(\in\) N, d> 1)
Ta có:\(\left(m^3+3m^2+2m+5\right)\)chia hết cho d
và \(m\left(m+1\right)\left(m+2\right)+6\) chia hết cho d
Suy ra:\(m\left(m+1\right)\left(m+2\right)+6-\left(m^3+3m^2+2m+5\right)\)chia hết cho d
Hay 1 chia hết cho d=>d=1
=>đpcm
bạn tôi học giỏi toán triệt tiêu kiểu gì mà siêu ghế :)) mẫu và tử cùng là tích thì mới triệt tiêu đc. vẫn còn cộng thế kia mà triệt như siêu nhân :))