\(A=\frac{a^4+a^2+2a+a}{a^4+a^2+a+1}\)

Rút gọn A rồi so sánh lAl và A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
17 tháng 8 2024

Bạn xem lại biểu thức A viết đã đúng chưa vậy?

9 tháng 2 2020

\(\frac{a^4-a^3+a-1}{a^4-a^3+2a^2-a+1}\)

\(=\frac{a^3\left(a-1\right)+\left(a-1\right)}{a^2\left(a^2-a+1\right)+\left(a^2-a+1\right)}\)

\(=\frac{\left(a-1\right)\left(a^3+1\right)}{\left(a^2-a+1\right)\left(a^2+1\right)}\)

\(=\frac{\left(a-1\right)\left(a+1\right)\left(a^2-a+1\right)}{\left(a^2-a+1\right)\left(a^2+1\right)}\)

\(=\frac{\left(a-1\right)\left(a+1\right)}{\left(a^2+1\right)}=\frac{a^2-1}{a^2+1}=1-\frac{2}{a^2+1}\)

Vậy : \(\frac{a^4-a^3+a-1}{a^4-a^3+2a^2-a+1}\)\(=1-\frac{2}{a^2+1}\)

25 tháng 11 2018

Ta có : \(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\) \(=\frac{\left(a^4-2a^2+1\right)-a^2}{\left(a^4-a^3-a^2\right)+\left(a^3-a^2-a\right)+\left(a^2-a-1\right)}\)

                                            \(=\frac{\left(a^2-1\right)^2-a^2}{a^2\left(a^2-a-1\right)+a\left(a^2-a-1\right)+\left(a^2-a-1\right)}\)

                                            \(=\frac{\left(a^2-a-1\right)\left(a^2+a-1\right)}{\left(a^2-a-1\right)\left(a^2+a+1\right)}\)

                                            \(=\frac{a^2+a-1}{a^2+a+1}\)

13 tháng 7 2018

\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)

Theo đề bài ta có :

Tử số : \(a^4-2a^2+1-a^2\)

\(=\left(a^2-1\right)^2-a^2\)

\(=\left(a^2-1+a\right)\left(a^2-1-a\right)\)

Mẫu số : \(a^4-\left(a^2+2a+1\right)\)

\(=a^4-\left(a+1\right)^2\)

\(=\left(a^2+a+1\right)\left(a^2-a-1\right)\)

Phân thức bằng \(\frac{a^2+a-1}{a^2+a+1}\)với điều kiện  \(a^2-a-1\ne0\)

21 tháng 12 2019

a) \(A=\left(\frac{2}{2a-b}+\frac{6b}{b^2-4a^2}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{2}{2a-b}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4}{2a+b}\right):\left(a+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\left(\frac{-2\left(b+2a\right)}{\left(b-2a\right)\left(b+2a\right)}+\frac{6b}{\left(b-2a\right)\left(b+2a\right)}-\frac{4\left(b-2a\right)}{\left(2a+b\right)\left(b-2a\right)}\right):\left(\frac{a\left(4a^2-b^2\right)}{4a^2-b^2}+\frac{4a^2+b^2}{4a^2-b^2}\right)\)

\(=\frac{-2b-4a+6b-4b+8a}{\left(b-2a\right)\left(b+2a\right)}:\frac{4a^3-ab^2+4a^2+b^2}{4a^2-b^2}\)

\(=\frac{4a}{\left(b-2a\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=\frac{-4a}{\left(2a-b\right)\left(b+2a\right)}.\frac{\left(2a-b\right)\left(2a+b\right)}{4a^3-ab^2+4a^2+b^2}\)

\(=.\frac{-4a}{4a^3-ab^2+4a^2+b^2}\)

b)  ĐKXĐ: \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)

Ta thấy \(a=\frac{1}{3};b=2\)thỏa mãn điều kiện \(\hept{\begin{cases}2a\ne b\\2a\ne-b\end{cases}}\)nên thay vào A ta được:

bạn thay vào tự tính nhé mà cái phần rút gọn bạn vừa làm vừa check giùm bài mik nhé =)) sợ sai 

22 tháng 6 2019

\(4a^2+b^2=5ab\)

\(\Rightarrow4a^2-5ab+b^2=0\)

\(\Rightarrow\left(4a^2-4ab\right)-\left(ab-b^2\right)=0\)

\(\Rightarrow4a\left(a-b\right)-b\left(a-b\right)=0\)

\(\Rightarrow\left(a-b\right)\left(4a-b\right)=0\)

Làm nốt

19 tháng 7 2017

a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)

\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)

\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)

\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)

\(=\left(a^2-a+2\right)\left(a+2\right)\)

\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)

17 tháng 5 2020

em chịu

4 tháng 4 2020

a) \(ĐKXĐ:\hept{\begin{cases}a\ne\pm2\\a\ne1\\a\ne0\end{cases}}\)

\(A=\left(\frac{4a}{2+a}+\frac{8a^2}{4-a^2}\right):\left(\frac{a-3}{a^2-2a}-\frac{2}{a}\right)\)

\(\Leftrightarrow A=\frac{8a-4a^2+8a^2}{\left(2-a\right)\left(2+a\right)}:\frac{a-3-2a+4}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a^2+8a}{\left(2-a\right)\left(2+a\right)}:\frac{-a+1}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a}{2-a}:\frac{-a+1}{a\left(a-2\right)}\)

\(\Leftrightarrow A=\frac{4a^2\left(a-2\right)}{\left(a-2\right)\left(a-1\right)}\)

\(\Leftrightarrow A=\frac{4a^2}{a-1}\)

b) Để A nhận giá trị nguyên

\(\Leftrightarrow\frac{4a^2}{a-1}\inℤ\)

\(\Leftrightarrow4a^2⋮a-1\)

\(\Leftrightarrow4\left(a^2-1\right)+4⋮a-1\)

\(\Leftrightarrow4\left(a-1\right)\left(a+1\right)+4⋮a-1\)

\(\Leftrightarrow4⋮a-1\)

\(\Leftrightarrow a-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow a\in\left\{0;2;-1;3;-3;5\right\}\)

Ta sẽ loại các giá trị ở đkxđ

Vậy để \(A\inℤ\Leftrightarrow a\in\left\{2;-1;3;-3;5\right\}\)