\(\frac{79}{1999}+\frac{191}{1998}+\frac{947}{1997}+\frac{673}{1998}+\frac{110}{1999}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2018

\(A=\frac{79}{1999}+\frac{191}{1998}+\frac{947}{1997}+\frac{673}{1998}+\frac{110}{1999}\)

\(A=\left(\frac{79}{1999}+\frac{110}{1999}\right)+\left(\frac{191}{1998}+\frac{673}{1998}\right)+\frac{947}{1997}\)

\(A=\frac{189}{1999}+\frac{16}{37}+\frac{947}{1997}\)

5 tháng 1 2020

A>1

2 tháng 4 2017

=4,034224056 mình cũng ko chắc nữa nhưng tịk giúp mình nha

12 tháng 4 2018
https://i.imgur.com/XM85QHj.jpg
8 tháng 3 2017

TẦM NHƯ HƠI CĂNG

8 tháng 3 2017

\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+\frac{1997}{3}+....+\frac{1}{1999}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2000}}{1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+....+\left(\frac{1}{1999}+1\right)}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{2000}{2}+\frac{2000}{3}+\frac{2000}{4}+....+\frac{2000}{2000}}\)

\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}\)

\(=\frac{1}{2000}\)

12 tháng 4 2018

\(C=\frac{1999^{2000}+1}{1999^{1999}+1}< \frac{1999^{1999}+1+1998}{1999^{2000}+1+1998}\)

\(=\frac{1999^{1999}+1999}{1999^{2000}+1999}\)

\(=\frac{1999\cdot(1999^{1998}+1)}{1999\cdot(1999^{1999}+1)}\)

\(=\frac{1999^{1999}+1}{1999^{1998}+1}=D\)

Vậy...

30 tháng 4 2016

Q>P chắc chắn luôn nhé