\(A=\frac{7}{3}+\frac{11}{3^2}+\frac{15}{3^3}+....+\frac{803}{3^{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2021

\(\Rightarrow3A=7+\frac{11}{3}+\frac{15}{3^2}+.....+\frac{803}{3^{199}}\) 

\(\Rightarrow2A\left(3A-A\right)=7+\frac{4}{3}+\frac{4}{3^2}+....+\frac{4}{3^{199}}-\frac{803}{3^{200}}\) 

\(\Rightarrow2A=7+4\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{199}}\right)-\frac{803}{3^{200}}\) (1)

Đặt \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{199}}\)

\(\Rightarrow3B=1+\frac{1}{3}+...+\frac{1}{3^{198}}\) 

\(\Rightarrow2B\left(3B-B\right)=1-\frac{1}{3^{199}}\) 

\(\Rightarrow B=\frac{1}{2}-\frac{1}{3^{199}.2}\) 

TỪ 1 => \(2A=7+4\left(\frac{1}{2}-\frac{1}{3^{199}.2}\right)-\frac{803}{3^{200}}\) 

\(\Rightarrow2A=7+2-\frac{2}{3^{199}}-\frac{803}{3^{200}}\) 

\(\Rightarrow2A=9-\frac{2}{3^{199}}-\frac{803}{3^{200}}\)

\(\Rightarrow A=4,5-\frac{1}{3^{199}}-\frac{803}{3^{200}.2}\) 

Vì \(4,5-\frac{1}{3^{199}}-\frac{803}{3^{200}.2}< 4,5\) 

Nên A<4,5

2 tháng 7 2019

a, \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\left(\frac{3}{10}-\frac{4}{10}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{5}{90}\)

\(=\frac{1}{18}\)

b,\(\frac{2}{3}+\frac{-1}{3}+\frac{7}{15}\)

\(=\frac{10}{15}-\frac{5}{15}+\frac{7}{15}\)

\(=\frac{12}{15}\)

\(=\frac{4}{5}\)

c, \(\frac{3}{8}.3\frac{1}{3}\)

\(=\frac{3}{8}.\frac{10}{3}\)

\(=\frac{10}{8}\)

\(=\frac{5}{4}\)

d, \(\frac{-3}{5}+0,8.\left(-7\frac{1}{2}\right)\)

\(=\frac{-3}{5}+\frac{4}{5}.\frac{-15}{2}\)

\(=\frac{-3}{5}+\frac{-60}{10}\)

\(=\frac{-3}{5}+\frac{-30}{5}\)

\(=\frac{-33}{5}\)

e, \(\frac{2}{5}.8\frac{1}{3}+1\frac{2}{3}.\frac{2}{5}\)

\(=\frac{2}{5}.\left(8\frac{1}{3}+1\frac{2}{3}\right)\)

\(=\frac{2}{5}.10\)

\(=4\)

f, \(\frac{3}{7}.19\frac{1}{3}-\frac{3}{7}.33\frac{1}{3}\)

\(=\frac{3}{7}.\left(19\frac{1}{3}-33\frac{1}{3}\right)\)

\(=\frac{3}{7}.-14\)

\(=-6\)

~Study well~

#KSJ

1 tháng 4 2019

A=1+(2-3-3+5)+(6-7-8+9)+....+(98-99-100+101)+102

=1+0+0+....+102=103

b) |1-2x|>7

=> 1-2x>7 hoặc 1-2x<-7

=> 2x<-6 hoặc 2x>8

=> x<-3 hoặc x>4

19 tháng 12 2018

áp dụng t/c DTSBN,ta có:

\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)

\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)

\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)

từ (!) và (@) => đpcm

11 tháng 6 2019

đáp án

a) 2/581/1677

b)-29/30

11 tháng 6 2019

a) \(\frac{5}{9}:\left(\frac{5}{12}-\frac{1}{11}\right)-\frac{5}{9}:\left(\frac{-1}{5}-\frac{2}{3}\right)\)

\(\frac{5}{9}:\left(\frac{55}{132}-\frac{12}{132}\right)-\frac{5}{9}:\left(\frac{-3}{15}-\frac{10}{15}\right)\)

\(\frac{5}{9}:\frac{43}{132}-\frac{5}{9}:\frac{-13}{15}\)

\(\frac{5}{9}\times\frac{132}{43}-\frac{5}{9}\times\frac{-15}{13}\)

=\(\frac{5}{9}\times\left(\frac{132}{43}-\frac{-15}{13}\right)\)

=\(\frac{5}{9}\times\frac{2361}{559}\)( Đến đây bạn tự quy đồng mẫu nha)

=\(\frac{3935}{1677}\)

27 tháng 5 2019

Bài 1:

Ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{a+b}{\frac{11}{3}}=\frac{11}{\frac{11}{3}}=3\)

=> \(\hept{\begin{cases}a=3.3\\b=3.\frac{2}{3}\end{cases}=\hept{\begin{cases}a=9\\b=2\end{cases}}}\)

=> ab = 92

Bài 2:

Hữu hạn: -7/16; 2/125; -9/8

Vô hạn tuần hoàn: -5/3; 5/6; -3/11

Chúc bạn học tốt !!!

28 tháng 5 2019

Bài 1: Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:

\(\frac{a}{3}=\frac{b}{\frac{2}{3}}=\frac{a+b}{3+\frac{2}{3}}=\frac{11}{\frac{11}{3}}=3\)

\(\Rightarrow\hept{\begin{cases}a=3.3=9\\b=\frac{2}{3}.3=2\end{cases}}\)

Vậy \(\overline{ab}=92\)

Bài 2: Số thập phân hữu hạn : \(\frac{-7}{16};\frac{2}{125};\frac{-9}{8}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu không có ước nguyên tố khác 2 và 5 nên  phân số đó viết được dưới dạng số thập phân hữu hạn.\(\hept{\begin{cases}16=2^4\\125=5^3\\8=2^3\end{cases}}\)

          Số thập phân vô hạn tuần hoàn: \(\frac{-5}{3};\frac{5}{6};\frac{-3}{11}\)

Vì đó là những phân số tối giản với mẫu dương và mẫu có ước nguyên tố khác 2 và 5 nên phân số đó viết dưới dạng số thập phân vô hạn tuần hoàn.\(\hept{\begin{cases}3=3\\6=2.3\\11=11\end{cases}}\)

9 tháng 11 2018

a) sai đề rồi bn 

b) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\left(\frac{a+b}{c+d}\right)^3\)(tính chất dãy tỉ số bằng nhau) (1)

\(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^3}{c^3}=\frac{b^3}{d^3}=\frac{a^3-b^3}{c^3-d^3}\)(2)

từ (1) và (2)\(\Rightarrow\left(\frac{a+b}{c+d}\right)^3=\frac{a^3-b^3}{c^3-d^3}\left(đpcm\right)\)

8 tháng 9 2019

Dùng tích chất kết hợp cho nó lẹ

a/\(\left(\frac{-2}{3}+\frac{3}{7}\right):\frac{4}{5}+\left(\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(\frac{-2}{3}+\frac{3}{7}+\frac{-1}{3}+\frac{4}{7}\right):\frac{4}{5}=\left(-1+1\right):\frac{4}{5}=0\)

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}+\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\left(\frac{-3}{22}+\frac{-3}{5}\right)=\frac{-5}{3\left(\frac{1}{22}+\frac{1}{5}\right)}=\frac{-550}{81}\)

8 tháng 9 2019

Mà hình như câu b mình làm sai

b/\(\frac{5}{9}:\left(\frac{1}{11}-\frac{5}{22}\right)+\frac{5}{9}:\left(\frac{1}{15}-\frac{2}{3}\right)=\frac{5}{9}:\frac{-3}{22}+\frac{5}{9}:\frac{-3}{5}=\frac{5.22}{9.-3}+\frac{5.5}{9.-3}=\frac{-\left(5.22+5.5\right)}{27}=-5\)