Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(8=xyz\le\frac{\left(x+y+z\right)^3}{27}\)
\(\Leftrightarrow a=x+y+z\ge6\)
Ta có:
\(A\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2\left(x+y+z\right)+12}\)
\(\ge\frac{\left(x+y+z\right)^2}{\frac{\left(x+y+z\right)^2}{3}+2\left(x+y+z\right)+12}=\frac{a^2}{\frac{a^2}{3}+2a+12}=\frac{3a^2}{a^2+6a+36}\)
Ta chứng minh:
\(\frac{3a^2}{a^2+6a+36}\ge1\)
\(\Leftrightarrow\left(a-6\right)\left(a+3\right)\ge0\)(đúng)
Vậy ta có ĐPCM
Bạn CM x=y=z=1
Sau đó bạn thế số vào và bạn sẽ tính đc phân số là 3/6 rút gọn là 1/2
Cuối cùng bạn sẽ kết luận:
Vì 1/2 ≤ 1/2
Nên ...(biểu thức)...≤1/2