\(\frac{6n-1}{3n+2}\)tìm n de a nho nhat

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

Ta có :\(A=\)\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\) có GTNN thì \(\frac{5}{3n+2}\) có\(GTLN\)

\(\Rightarrow\) \(3n+2\) có \(GTNN\)

\(\Rightarrow\) \(3n\) có \(GTNN\)

\(\Rightarrow\) \(n\) có \(GTNN\)

\(\Rightarrow\) \(n=0\)

10 tháng 7 2016

A= 6n-1 chia hết cho 3n-2

=> 3(6n-10) chia hết cho 3n-2

=> 18n-10 chia hết cho 3n-2

=> 6(3n-2) -2 chia hết cho 3n-2

=> 2 chia hết cho 3n-2

=> 3n-2E{-1; -2; 1;2}

=> 3nE{ 1; 0; 3; 4}

=> nE{ 0; 1}

Để A có giá trị nhỏ nhất thì 3n+2 phải lớn nhất.

Để 3n+2 lớn nhất thì 3n lớn nhất => n phải lớn nhất.

Vì n lớn nhất => không tìm được n .

21 tháng 4 2019

\(A=\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}.\)

A đạt GTNN khi và chỉ khi \(\frac{5}{3n+2}\)đạt GTLN

 \(\Leftrightarrow\)3n + 2 đạt GTNN (3n + 2 \(\ne\)0 ) 

\(\Rightarrow\)3n đạt GTNN

\(\Rightarrow\)n = 0 (tm) 

15 tháng 4 2020

\(A=\frac{3n+3}{n-3}\left(n\ne3\right)\)

\(A=\frac{3\left(n-3\right)+12}{n-3}=3+\frac{12}{n-3}\)

A có GTLN khi \(\frac{12}{n-3}\)nhỏ nhất => n-3 nhỏ nhất

=> n-3=1

=> n=4

A có GTNN khi \(\frac{12}{n-3}\)lớn nhất => n-3 lớn nhất

=> n-3 =12

=> n=15

4 tháng 3 2018

mình cần gấp nhé

4 tháng 3 2018

\(a)\) Ta có : 

\(A=\frac{6n-2}{3n+1}=\frac{6n+2-4}{3n+1}=\frac{2\left(3n+1\right)-4}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{4}{3n+1}=2+\frac{4}{3n+1}\)

Để A là số nguyên thì \(\frac{4}{3n+1}\) phải là số nguyên \(\Rightarrow\)\(4⋮\left(3n+1\right)\)\(\Rightarrow\)\(\left(3n+1\right)\inƯ\left(4\right)\)

Mà \(Ư\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)

Do đó : 

\(3n+1\)\(1\)\(-1\)\(2\)\(-2\)\(4\)\(-4\)
\(n\)\(0\)\(\frac{-2}{3}\)\(\frac{1}{3}\)\(-1\)\(1\)\(\frac{-5}{3}\)

Lại có  \(n\inℤ\) nên \(n\in\left\{-1;0;1\right\}\)

Câu b) là tương tự rồi tính n ra, sau đó thấy n nào giống với câu a) rồi trả lời  

7 tháng 6 2021

A=\(\frac{6n-1}{3n+2}\)\(=\frac{6n+4-5}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để A Min thì \(\frac{5}{3n+2}\)Min\(\Rightarrow\)n=1

Nếu thấy đúng thì cho mk nhe!

\(n\inℕ\) thì còn được chứ \(n\inℤ\)thì NOPE

9 tháng 5 2018

gọi d \(\in\)UC(6n+1;3n+2)

\(\Rightarrow6n+1-2\left(3n+2\right)⋮d\)

\(\Rightarrow6n+1-6n-4⋮d\)

\(\Rightarrow-3⋮d\Rightarrow d\in u\left(-3\right)=\left\{1;-1;3;-3\right\}\)

Lập bảng:

\(6n+1\)\(1\)\(-1\)\(3\)\(-3\)
\(n\)\(0\)\(-\frac{1}{3}\)\(\frac{1}{2}\)\(-\frac{2}{3}\)

A là số nguyên \(\Rightarrow\)n = { \(-\frac{1}{3}\)}

11 tháng 3 2018

\(a)\) Ta có : 

\(n^2+3n-13=n\left(n+3\right)-13\) chia hết cho \(n+3\)

\(\Rightarrow\)\(-13\) chia hết cho \(n+3\)

\(\Rightarrow\)\(\left(n+2\right)\inƯ\left(-13\right)\)

Mà \(Ư\left(-13\right)=\left\{1;-1;13;-13\right\}\)

Suy ra : 

\(n+3\)\(1\)\(-1\)\(13\)\(-13\)
\(n\)\(-2\)\(-4\)\(10\)\(-16\)

Vậy \(n\in\left\{-16;-4;-2;10\right\}\)

Chúc bạn học tốt ~

19 tháng 4 2017

câu b dễ