\(\frac{6n-1}{3n+2}\)

a) Tìm n\(\varepsilon\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 3 2018

\(a,\text{ }A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)

\(\Rightarrow n-2+3⋮n-2\)

      \(n-2⋮n-2\)

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)\)

đến đây bn liệt kê ước của 3 r` lm tiếp!

b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)

để A đạt giá trị lớn nhất thì \(\frac{3}{n-2}\) lớn nhất

=> n-2 là số nguyên dương nhỏ nhất

=> n-2 = 1

=> n = 3

vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)

29 tháng 7 2018

a) ta có: \(A=\frac{4n+1}{2n+3}=\frac{4n+6-5}{2n+3}=\frac{2.\left(2n+3\right)-5}{2n+3}=2-\frac{5}{2n+3}\)

Để A nhận giá trị nguyên

=> 5/2n+3 thuộc Z

=> 5 chia hết cho 2n+3

=> 2n+3 thuộc Ư(5)={1;-1;5;-5}

nếu 2n+3 = 1 => 2n = -2 => n = -1 (TM)

2n+3 = -1 => 2n = -4 => n = -2 (TM)

2n+3 = 5 => 2n = 2 => n = 1 (TM)

2n+3 = -5 => 2n = 8 => n = -4 (TM)

KL:...

b) tìm n thuộc Z để A là phân số tối giản

Để A là phân số tối giản

\(\Rightarrow n\notin\left\{-1;-2;1;-4\right\}\)

29 tháng 7 2018

a) Để A nhận giá trị nguyên thì 4n+1 phải chia hết cho 2n+3

\(\Rightarrow4n+1⋮2n+3\)(1)

Lại có:\(\left(2n+3\right)\times2⋮2n+3\)

\(\Rightarrow4n+6⋮2n+3\)(2)

Từ (1) và (2) suy ra:

\(\left(4n+6\right)-\left(4n+1\right)⋮2n+3\)

\(\Rightarrow4n+6-4n-1⋮2n+3\)

\(\Rightarrow\left(4n-4n\right)+\left(6-1\right)⋮2n+3\)

\(\Rightarrow5⋮2n+3\)

\(\Rightarrow2n+3\inƯ\left(5\right)\)

mà Ư(5)=(-5;-1;1;5)

\(\Rightarrow2n+3\in\left(-5;-1;1;5\right)\)

\(\Rightarrow2n\in\left(-8;-4;4;8\right)\)

\(\Rightarrow n\in\left(-4;-2;2;4\right)\)

Vậy với \(n\in\left(-4;-2;2;4\right)\)

18 tháng 3 2018

n = { 3, -3 , -8

18 tháng 3 2018

Để \(A\in Z\Leftrightarrow\left(n+8\right)⋮\left(2n-5\right)\)

Giả sử\(\left(n+8\right)⋮\left(2n-5\right)\)

\(\Leftrightarrow2\left(n+8\right)⋮\left(2n-5\right)\)

\(\Leftrightarrow2n+16⋮\left(2n-5\right)\)

\(\Leftrightarrow2n-5+21⋮\left(2n-5\right)\)

Do \(2n-5⋮2n-5\)

\(\Rightarrow21⋮\left(2n-5\right)\)

\(\Rightarrow\left(2n-5\right)\inƯ\left(21\right)\)

Ta có bảng sau:

2n-5-21-7-3-113721
2n-16-224681226
n-8-11234613

Do \(n\inℕ^∗\Rightarrow n\in\left\{1;2;3;4;6;13\right\}\)

1 tháng 5 2015

Phần a dễ , tớ làm sau.Để tớ chơi phần b {}

Phàn a) dễ oy , tự lm nhé !

b) Ta có : \(A=\frac{6n-1}{3n+2}=\frac{2\left(3n+2\right)-5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A_{min}\Leftrightarrow\frac{5}{3n+2}max\)

Xét 3n+2>0 =>3n>-2=>n>\(\frac{-2}{3}\)=> n >hoặc = 0(vì n \(\in\)Z )=>\(\frac{5}{3n+2}\)>0 (1)

Xét 3n+2<0 => 3n<-2 =>n<\(\frac{-2}{3}\)=>\(\frac{5}{3n+2}\)<0 (2)

từ (1) và (2) và do \(\frac{5}{3n+2}\)max => ta chọn trường hợp (1)

p/s \(\frac{5}{3n+2}\)dương có tử số dương ko đổi nên A bé nhất khi mẫu số bé nhất \(\Leftrightarrow\)n nhỏ nhất \(\Leftrightarrow\)n=0

Vậy \(A_{min}=\frac{-1}{2}\Leftrightarrow n=0\)

20 tháng 3 2021

n có giá trị nhỏ nhất khi và chỉ khi 3n+2 có giá trj lớn nhất cứ theo thé mà làm bài

20 tháng 3 2021

Ta có: \(A=\frac{6n+9}{3n+2}=\frac{6n+4+5}{3n+2}=2+\frac{5}{3n+2}\)

Để \(A_{min}\)\(\Rightarrow\)\(2+\frac{5}{3n+2}min\)mà \(\hept{\begin{cases}2>0\\5>0\\n\inℤ\end{cases}}\)

\(\Rightarrow\)\(3n+2\)lớn nhất nhưng nguyên âm

\(\Rightarrow\)\(3n+2=-1\)\(\Leftrightarrow\)\(n=-1\)\(\left(TM\right)\)

Vậy để \(A_{min}\)\(\Leftrightarrow\)\(n=-1\)

9 tháng 7 2019

\(A=\frac{6-3n}{n}=\frac{6}{n}-3\)

\(\Rightarrow A\in Z\Leftrightarrow\frac{6}{n}\in Z\Rightarrow n\inƯ_6\)

\(\Rightarrow...\)

\(B=\frac{7+14n}{2n}=\frac{7}{2n}+7\)

\(B\in Z\Leftrightarrow\frac{7}{2n}\in Z\Rightarrow2n\inƯ_7\)

\(\Rightarrow...\)

\(c,\frac{3-21n}{3n}=\frac{3}{3n}-7=\frac{1}{n}-7\)

\(C\in Z\Leftrightarrow\frac{1}{n}\in Z\Leftrightarrow n\in\left\{\pm1\right\}\)

16 tháng 1 2019

a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63

đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được

3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1

nên n+5 chia hết cho 7 => n=7k+2 (k E N)

b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63

=> 3n+1 E  {1;7}=>3n E {0;6}=>n E {0;2}

Vậy với n=0 hoặc: n=2 thì B nguyên 

16 tháng 1 2019

a, B rút gọn đc <=> 3n+1 chia hết cho các ước nguyên tố của 63

đó chính là : 3 và 7 dễ thấy 3n+1 chia 3 dư 1 nên: 3n+1 chia hết cho 7 để rút gọn được

3n+1 chia hết cho 7 => 3n+15 chia hết cho 7=>3(n+5) chia hết cho 7 vì (7;3)=1

nên n+5 chia hết cho 7 => n=7k+2 (k E N)

b, B nguyên <=> 63 chia hết cho 3n+1 => 3n+1 là ước chia 3 dư 1 của 63

=> 3n+1 E  {1;7}=>3n E {0;6}=>n E {0;2}

Vậy với n=0 hoặc: n=2 thì B nguyên