\(A=\frac{60!}{30!}-30!\)

Chứng minh rằng \(A⋮61\)<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2018

a)=>A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

Đặt tổng trong ngoặc là M

=>M=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)\(=1-\frac{1}{50}< 1\)

Khi đó A=1+M (M<1)

Ta có công thức :1+x<2 nếu x<1

=>A<1

15 tháng 7 2018

bn ơi A < 2 makk

26 tháng 1 2018

b, Dãy B có 30 số ta nhóm thành 5 nhóm mỗi nhóm gồm 6 số thì mỗi nhóm đều chia hết cho 63

Ví dụ : 2^1+2^2+2^3+2^4+2^5+2^6

= 2.(1+2+2^2+2^3+2^4+2^5)

= 2.63 chia hết cho 6

=> B chia hết cho 63

Mà 63 = 21.3 nên B chia hết cho 21

26 tháng 1 2018

a, Có : A = 1 + 1/2.2 + 1/3.3 + ....... + 1/50.50

=> A < 1 + 1/1.2 + 1/2.3 + ...... + 1/49.50

= 1 + 1 - 1/2 + 1/2 - 1/3 + ...... + 1/49 - 1/50

= 1 + 1 - 1/50

= 2 - 1/50 

< 2

=> A < 2

Tk mk nha

4 tháng 4 2017
b) Ta có 1≡−601≡−60 (mod 61)
Tương tự suy ra
1.2.3........30≡−60.−59.......−31=60.59...311.2.3........30≡−60.−59.......−31=60.59...31 (mod 61)
Suy ra 1.2.3....30−60.59...311.2.3....30−60.59...31 chia hết cho 61
Toán lớp 7 mới được làm cách này!Thôi xin 1 tick
Please!!!!thanghoa
4 tháng 4 2017

mk chịu thôi

21 tháng 9 2021

Ta có: \(60⋮5\)nên \(60⋮5\)

\(45⋮15\)

=>\(60.n+45⋮15\)

Ta lại có: \(60⋮30\)nên \(60⋮30\)

Mà 45 ko chia hết cho 30

=> Với mọi n thuộc N thì \(60.n+45⋮15\)nhưng ko chia hết cho 30 ( đpcm )

25 tháng 7 2018

\(a)\frac{(-5)^{60}.30^5}{15^5.5^{61}}=\frac{(5.2.3)^5}{(5.3)^5.5}=\frac{5^5.2^5.3^5}{5^5.3^5.5} =\frac{2^5}{5}=\frac{32}{5}\)

\(b) \frac{(-3)^{10}.15^5}{25^3.(-9)^7}=\frac{(-3)^{10} .(3.5)^5}{(5^2)^3.[(-3).3]^7}=\frac{(-3)^{10}.3^5.5^5}{5^6.(-3)^7.3^7}=\frac{(-3)^3}{5.3^2}=\frac{-3}{5}\)

~ Hok tốt a~

11 tháng 4 2018

A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63

Ta có : A = 1/5 + 1/13 + 1/14 + 1/15 + 1/60 + 1/61 + 1/62 + 1/63 < 1/5 + 1/12 + 1/12 + 1/12 + 1/60 + 1/60 + 1/60 

               = A < 1/5 + 1/4 + 1/20 

               = A < 1/2

Vậy A < 1/12