Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A= \(\frac{5n+1}{n+1}\)
thì \(5n+1\)chia hết cho n +1 nên n+1 thuộc U(5)=1, 5.-1,-5
Ta có
Nếu n+1 =1 thì suy ra n =0
....n+1 = -1 thì suy ra n= -2
... n+1=5 thì suy ra n =4
....n+1= -5 thì suy ra n = -6
vây n thuộc 0, -2, 4, -6
Để \(A=\frac{5n+1}{n+1}\in Z\) \(\Leftrightarrow5n+1⋮n+1\)
\(\Leftrightarrow\) \(5n+1-5\left(n+1\right)⋮n+1\) (Vì 5(n+1)⋮n+1)
\(\Leftrightarrow5n+1-5n-5⋮n+1\)
\(\Leftrightarrow-4⋮n+1\)
\(\Rightarrow n+1\in\) Ư\(\left(-4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{0;1;3;-2;-3;-5\right\}\)
Mà \(n\in N\) nên \(n\in\left\{0;1;3\right\}\)
Vậy để \(A\) nguyên thì \(n\in\left\{0;1;3\right\}\) (\(n\in N\))
Bài 2:\(A=\frac{n+1}{n-2009}=\frac{n-2009+2010}{n-2009}=\frac{n-2009}{n-2009}+\frac{2010}{n-2009}=1+\frac{2010}{n-2009}\)
Để A có giá trị lớn nhất \(1+\frac{2010}{n-2009}\)cũng có giá trị lớn nhất =>\(\frac{2010}{n-2009}\)cũng có giá trị lớn nhất => \(n-2009\inƯ\left(2010\right)\)
và \(n-2009\in N\left(n\in Z\right)\)và bé nhất (để\(\frac{2010}{n-2009}\)lớn nhất)
=>n - 2009 = 1 =>n = 2010
Thay n = 2010 vào \(1+\frac{2010}{n-2009}\)ta được: \(1+\frac{2010}{2010-2009}=1+2010=2011\)
Vậy giá trị lớn nhất của A là 2011 khi n=2010
Bài 1:\(A=\frac{5-2n}{n+3}=\frac{9-4+2n}{n+3}=\frac{9}{n+3}-\frac{4+2n}{n+3}=\frac{9}{n+3}-2\)
Để \(A\in N\)thì\(\frac{9}{n+3}-2\in N\Rightarrow\frac{9}{n+3}\in N\Rightarrow n+3\inƯ\left(9\right)\)
Ta có bảng sau:
n + 3 | 9 | -9 | 3 | -3 | 1 | -1 |
n | 6 | -12 | 0 | -6 | -2 | -4 |
a) Câu hỏi của Nguyễn Khánh Ly - Toán lớp 7 - Học toán với OnlineMath
b) 2n - 3 = 2n + 2 - 5 chia hết cho n + 1
<=> 5 chia hết cho n + 1
<=> n + 1 thuộc Ư(5) = {1;5}
<=> n thuộc {0;4}
Bài 1
1, Ta có \(A=\frac{10}{56}+\frac{10}{140}+\frac{10}{260}+....+\frac{10}{1400}\)
\(A=\frac{5}{28}+\frac{5}{70}+\frac{5}{130}+...+\frac{5}{700}\)
\(A=\frac{5}{4.7}+\frac{5}{7.10}+\frac{5}{10.13}+....+\frac{5}{25.28}\)
\(A=5.\left(\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+....+\frac{1}{25.28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(A=5.\left(\frac{1}{4}-\frac{1}{28}\right)=5.\frac{3}{14}=\frac{15}{14}\)
Vậy \(A=\frac{15}{14}\)
2,
a) \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=\frac{3}{n-5}\)
Suy ra để A có giá trị nguyên thì \(n-5\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Khi đó \(n-5\in\left\{1;-1;3;-3\right\}\)
Suy ra \(n\in\left\{6;4;8;2\right\}\)
Vậy ......
b) Ta có : \(A=\frac{2n-7}{n-5}=\frac{2n-7-3+3}{n-5}=\frac{\left(2n-10\right)+3}{n-5}=2+\frac{3}{n-5}\)
Để A có giá trị lớn nhất \(\Leftrightarrow\frac{2n-7}{n-5}\)lớn nhất \(\Leftrightarrow2+\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow\frac{3}{n-5}\)lớn nhất \(\Leftrightarrow n=6\)
Khi đó A = 5
Vậy A đạt GTLN khi và chỉ khi n = 6
a) Tìm \(n\in N\), biết:
\(3.5^{2n+1}-3.25^n=300\)
b) Tìm x để:
\(f\left(x\right)=6x^{^{ }4}-2x^3+5=5\)
a)\(3\cdot5^{2n+1}-3\cdot25^n=300\)
\(3\cdot5^{2n}\cdot5-3\cdot25^n=300\)
\(15\cdot25^n-3\cdot25^n=300\)
\(25^n\cdot12=300\)
\(25^n=25\)
\(\Rightarrow n=1\)
b)\(f\left(x\right)=6x^4-2x^3+5=5\)
\(6x^4-2x^3=0\)
\(6x^4=2x^3\)
\(3x^4=x^3\)
\(3x^4-x^3=0\)
\(x^3\left(3x-1\right)=0\)
\(\Rightarrow x^3=0\) hoặc 3x-1=0
\(\Rightarrow x=0,3x=1\)
\(\Rightarrow x=0,x=\frac{1}{3}\)(loại vì \(x\in N\))
Vậy x=0
\(A=\frac{5n+1}{n+1}=\frac{5n+5-4}{n+1}=\frac{5\left(n+1\right)-4}{n+1}=5-\frac{4}{n+1}\)
Để \(5-\frac{4}{n+1}\) là số tự nhiên \(\Leftrightarrow\frac{4}{n+1}\)là số tự nhiên
=> n + 1 là ước tự nhiên của 4 => Ư(4) = { 1; 2; 4 }
Ta có : n + 1 = 1 <=> n = 1 - 1 => n = 0 (TM)
n + 1 = 2 <=> n = 2 - 1 => n = 1 (TM)
n + 1 = 4 <=> n = 4 - 1 => n = 3 (TM)
Vậy n = { 0; 1; 3 } thì A là số tự nhiên
Để \(A=\frac{5n+1}{n+1}\in N\left(n\ne1\right)\) thì 5n + 1 chia hết cho n + 1
<=> 5n + 5 - 4 chia hết cho n + 1
=> 5(n + 1) - 4 chia hết cho n + 1
=> 4 chia hết cho n + 1
=> n + 1 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng: