Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : Với : \(x>0;x\ne1\)
\(P=\left(1+\frac{1}{\sqrt{x}-1}\right)\frac{1}{x-\sqrt{x}}=\left(\frac{\sqrt{x}}{\sqrt{x}-1}\right).\sqrt{x}\left(\sqrt{x}-1\right)=x\)
Thay vào ta được : \(P=x=25\)
Bài 2 :
a, Với \(x\ge0;x\ne1\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2}{\sqrt{x}+1}-\frac{2}{x-1}=\frac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}\)
\(=\frac{x-\sqrt{x}}{x-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)
Thay x = 9 vào A ta được : \(\frac{3}{3+1}=\frac{3}{4}\)
a, ĐKXĐ : x^2-9 khác 0 ; x-3 khác 0 ; x+3 khác 0 => x khác -3 và 3
A = x^2+3+2.(x-3)-(x+3)/(x-3).(x+3) = x^2+x-6/(x-3).(x+3) = (x-2).(x+3)/(x-3).(x+3) = x-2/x-3
b, Để A = 1/2 => x-2 = 2.(x-3) = 2x-6
=> x = 4 (tm ĐKXĐ)
k mk nha
a) ĐK: \(x\ne0,x\ne\pm3\)
\(A=\left(\frac{x-3}{x^2-9}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)
\(=\left(\frac{1}{x+3}+\frac{1}{x+3}\right)\div\frac{x}{x+3}\)
\(=\frac{2}{x+3}\times\frac{x+3}{x}=\frac{2}{x}\)
b) \(\left|A\right|=\left|\frac{2}{x}\right|=3\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{2}{x}=3\\\frac{2}{x}=-3\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=-\frac{2}{3}\end{cases}}\)(thỏa mãn)
đkcđ: x khác 0 và -3
\(A=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x.\left(x-3\right)}\)
\(A=\frac{\left(x-3\right)^2}{x.\left(x-3\right)}-\frac{x^2}{x.\left(x-3\right)}+\frac{9}{x.\left(x-3\right)}\)
\(A=\frac{x^2-6x+9-x^2+9}{x.\left(x-3\right)}=\frac{-6x+18}{x.\left(x-3\right)}=\frac{-6.\left(x-3\right)}{x.\left(x-3\right)}=-\frac{6}{x}\)
để A thuộc Z => 6 chia hết cho x
=>....
\(Taco\)
\(ĐKXD:x\ne0;x\ne3\)
\(\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x^2-3x}=\frac{x-3}{x}-\frac{x}{x-3}+\frac{9}{x\left(x-3\right)}\)
\(=\frac{x^2-6x+9}{x\left(x-3\right)}-\frac{x^2}{x\left(x-3\right)}+\frac{9}{x\left(x-3\right)}=\frac{x^2-6x+9-x^2+9}{x\left(x-3\right)}\)
\(=\frac{18-6x}{x-3}\)
\(A\inℤ\Leftrightarrow18-6x⋮x-3\Leftrightarrow18-6x+6x-18⋮x-3\Leftrightarrow0⋮x-3\)
Vậy vs mọi GT của x thì A nguyên
a xác định khi và chỉ khi x^2 -1 khác 0 suy ra x^2 khác 1 suy ra x khác 1
\(\frac{x^2-9}{x^2+2x+1}\)khác 0 suy ra x^2-9 khác 0 suy ra x^2 khác 9 suy ra x khác 3
1-x khác 0 suy ra x khác 1
vậy xác định khi x khác 1 và 3
b A = \(\frac{x+3}{x^2-1}\cdot\frac{x^2+2x+1}{x^2-9}-\frac{x}{1-x}\)
= \(\frac{\left(x+3\right)\cdot\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+3\right)}-\frac{x}{1-x}\)
= \(\frac{x+1}{\left(x-1\right)\left(x-3\right)}+\frac{x}{x-1}\)
= \(\frac{x+1+x\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\frac{x+1+x^2-3x}{\left(x-1\right)\left(x-3\right)}=\frac{x^2-2x+1}{\left(x-1\right)\left(x-3\right)}=\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x-3\right)}=\frac{x-1}{x-3}\)
\(M=\left(\frac{x^2+x+10}{x^2-9}-\frac{1}{x-3}\right):\frac{1}{x-3}\) \(ĐKXĐ:x\ne\pm3\)
\(M=\left[\frac{x^2+x+10}{\left(x-3\right)\left(x+3\right)}-\frac{x+3}{\left(x-3\right)\left(x+3\right)}\right]:\frac{1}{x-3}\)
\(M=\left[\frac{x^2+x+10-x-3}{\left(x-3\right)\left(x+3\right)}\right]:\frac{1}{x-3}\)
\(M=\frac{x^2+7}{\left(x-3\right)\left(x+3\right)}.\left(x-3\right)\)
\(M=\frac{x^2+7}{x+3}\)
vậy \(M=\frac{x^2+7}{x+3}\)
khi \(x=5\)thì \(M=\frac{5^2+7}{5+3}=\frac{25+7}{8}=\frac{32}{8}=4\)
vậy \(M=4\)khi \(x=5\)
a, \(A=\frac{x^2+3x-x+3-x^2+1}{x^2-9}\)\(.\frac{x+3}{2}\) \(\left(x\ne3;-3\right)\)
\(A=\frac{2x+4}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{2\left(x+2\right)}{\left(x-3\right)\left(x+3\right)}.\frac{x+3}{2}\)\(=\frac{x+2}{x-3}\)
b, để \(A\in Z\Rightarrow\hept{\begin{cases}x+2⋮x-3\\x-3⋮x-3\end{cases}}\)\(\Rightarrow x+2-x+3=5⋮x-3\)\(\leftrightarrow x+3\in\left(1;5;-1;-5\right)\)
\(\leftrightarrow x\in\left(-2;2;-4;-8\right)\)
\(A=\left(\frac{3-x}{x+3}\times\frac{x^2+6x+9}{x^2-9}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\) \(\left(ĐKXĐ:x\ne\pm3\right)\)
\(A=\left(\frac{3-x}{x+3}\times\frac{x+3}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{3-x}{x-3}+\frac{x}{x+3}\right):\frac{3x^2}{x+3}\)
\(A=\left[\frac{\left(3-x\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}\right]:\frac{3x^2}{x+3}\)
\(A=\left(\frac{9-3x}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(A=\left(\frac{-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right):\frac{3x^2}{x+3}\)
\(A=\frac{-3}{x+3}\times\frac{x+3}{3x^2}\)
\(A=\frac{-1}{x^2}\)
Ta có :\(x^2+x-6=0\)
\(\Leftrightarrow\left(x^2-2x\right)+\left(3x-6\right)=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\left(L\right)\\x=2\left(tm\right)\end{cases}}\)
\(\Rightarrow A=\frac{-1}{2^2}\)
\(A=\frac{-1}{4}\)
a, +) ĐKXĐ: \(x\ne-3,x\ne2\)
\(A=\frac{2x+6}{\left(x+3\right)\left(x-2\right)}=\frac{2\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{2}{x-2}\)
+) ĐKXĐ: \(x^2-6x+9\ne0\Leftrightarrow\left(x-3\right)^2\ne0\Leftrightarrow x\ne3\)
\(B=\frac{x^2-9}{x^2-6x+9}=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)^2}=\frac{x+3}{x-3}\)
b, +)Để A=0 <=> \(\frac{2}{x-2}=0\Leftrightarrow2=0\left(loại\right)\)
Vậy k có x thỏa mãn để A=0
+)Để B=0 <=> \(\frac{x+3}{x-3}=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\left(TMĐK\right)\)
Vậy x=-3 thì B=0
a) ĐKXĐ : \(\hept{\begin{cases}x-3\ne0\\x^2-9\ne0\\x+3\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne3\\x\ne\pm3\\x\ne-3\end{cases}}\Rightarrow x\ne\pm3\)
b) A = \(\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}=\frac{3\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x+9}{\left(x-3\right)\left(x+3\right)}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{x^2+6x+9}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)
Khi x = 3 => Không thỏa mãn ĐKXĐ
=> Không tồn tại A khi x = 3
a, Điều kiện xác định là :
\(\hept{\begin{cases}x-3\ne0\\x^2-9\ne0\\x+3\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne3\\\left(x-3\right)\left(x+3\right)\ne\\x\ne-3\end{cases}}0\Rightarrow x\ne\pm3}\)
Vậy \(x\ne\pm3\)
b, \(A=\frac{3}{x-3}+\frac{6x}{x^2-9}+\frac{x}{x+3}\)
\(=\frac{3}{x-3}+\frac{6x}{\left(x-3\right)\left(x+3\right)}+\frac{x}{x+3}\)
\(=\frac{3x+9+6x+x^2-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}=\frac{x+3}{x-3}\)
Thay x = 3 ( ktm đkxđ )
Ko tồn tại x