Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{x}+\sqrt{\frac{x}{9}}-\frac{1}{3}\sqrt{4x}=5\)
ĐK : x ≥ 0
<=>\(\sqrt{x}+\sqrt{x\times\frac{1}{9}}-\frac{1}{3}\sqrt{2^2x}=5\)
<=> \(\sqrt{x}+\sqrt{x\times\left(\frac{1}{3}\right)^2}-\left(\frac{1}{3}\times\left|2\right|\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\left|\frac{1}{3}\right|\sqrt{x}-\left(\frac{1}{3}\times2\right)\sqrt{x}=5\)
<=> \(\sqrt{x}+\frac{1}{3}\sqrt{x}-\frac{2}{3}\sqrt{x}=5\)
<=> \(\sqrt{x}\left(1+\frac{1}{3}-\frac{2}{3}\right)=5\)
<=> \(\sqrt{x}\times\frac{2}{3}=5\)
<=> \(\sqrt{x}=\frac{15}{2}\)
<=> \(x=\frac{225}{4}\)( tm )
a) \(x^2-5+\sqrt{x+5}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+5\right)+\sqrt{x+5}=0\)(tự làm tiếp)
b) Đề hơi sai sai
c) Mik chưa nghĩ ra
d) \(\left(\sqrt{1-2x}-1\right)+\left(\sqrt{1+2x}-1\right)+x^2=0\)
\(\frac{-2x}{\sqrt{1-2x}+1}+\frac{2x}{\sqrt{1+2x}+1}+x^2=0\)(tự lm tiếp)
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
Bài 1 :
\(6xy\cdot\sqrt{\frac{9x^2}{16y^2}}=6xy\cdot\frac{3x}{4y}=\frac{18x^2y}{4y}=\frac{9}{2}x^2\)
\(\sqrt{\frac{4+20a+25a^2}{b^4}}=\sqrt{\frac{\left(2+5a\right)^2}{\left(b^2\right)^2}}=\frac{2+5a}{b^2}\)
\(\left(m-n\right).\sqrt{\frac{m-n}{\left(m-n\right)^2}}=\sqrt{\left(m-n\right)^2}\cdot\sqrt{\frac{1}{m-n}}=\sqrt{\frac{\left(m-n\right)^2}{m-n}}=\sqrt{m-n}\)
Bài 2 :
1. \(\left(2\sqrt{3}-\sqrt{12}\right):5\sqrt{3}=\left(2\sqrt{3}-2\sqrt{3}\right):5\sqrt{3}=0:5\sqrt{3}=0\)
2. \(\sqrt{\frac{317^2-302^2}{1013^2-1012^2}}=\frac{\sqrt{\left(317+302\right)\left(317-302\right)}}{\sqrt{\left(1013+1012\right)\left(1013-1012\right)}}=\frac{\sqrt{619}\cdot\sqrt{15}}{\sqrt{2025}}=\sqrt{\frac{619}{135}}\)(check lại)
3. \(\sqrt{27\left(1-\sqrt{3}\right)^2}:3\sqrt{75}\)
\(=\sqrt{27}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=3\sqrt{3}\left(1-\sqrt{3}\right):15\sqrt{3}\)
\(=\frac{1-\sqrt{3}}{5}\)
4.\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\frac{5}{\sqrt{5}}+\frac{\sqrt{20}}{2}-\frac{\frac{5}{4}\cdot2}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\frac{2\sqrt{5}}{2}-\frac{\frac{5}{2}}{\sqrt{5}}+\sqrt{5}\right):2\sqrt{5}\)
\(=\left(\sqrt{5}+\sqrt{5}+\frac{\sqrt{5}}{2}+\sqrt{5}\right):2\sqrt{5}\)
\(=\frac{7}{2}\sqrt{5}:2\sqrt{5}\)
\(=\frac{7}{4}\)
a, \(P=\frac{\sqrt{x}\left(x\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+1=\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+1\)
\(=\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-1+1=x+\sqrt{x}-2\sqrt{x}=x-\sqrt{x}\)
b, \(P=x-\sqrt{x}=x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\ge\frac{-1}{4}\)
Vậy Min P =-1/4
c, Chắc bằng nhau vì cùng dương mà
Phần a như bạn Đỗ Ngọc Hải chỉ thêm ĐKXĐ : x >= 0
b) Đkxd X >=0
Ta Có P = x-\(\sqrt{x}\) -2√x.½+1/4 -1/4=\(\left(\sqrt{x}-\frac{1}{2}\right)^2\)\(-\frac{1}{4}\)
Có √x>=0<=> (√x-½)2>=1/4<=>(√x-½)2-1/4>=0=>P>=0
Hay min p =0
Dấu = xảy ra <=> x=0
Vậy để minP=0<=>x=0
C)Dkxd x>1
CóP>=0(chứng minh trên )
=>|P|=P
a)\(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{3-2\sqrt{3}+1}-\sqrt{3}\)
\(=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{9+6\sqrt{2}+2}-3+\sqrt{2}\)
\(=\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
c) \(\sqrt{25x^2}-2x=-5x-2x=-7x\)(vì x < 0)
d) \(x-5+\sqrt{25-10x+x^2}=x-5+\sqrt{\left(5-x\right)^2}=x-5+x-5=2x-10\) (vì x > 5)
a, \(\sqrt{x^2-4x+4}=3\Leftrightarrow\sqrt{\left(x-2\right)^2}=3\)
\(\Leftrightarrow x-2=3\Leftrightarrow x=5\)
b, \(\sqrt{x^2-10x+25}=x+3\Leftrightarrow\sqrt{\left(x-5\right)^2}=x+3\)
\(\Leftrightarrow x-5=x+3\Leftrightarrow0\ne8\)( vô nghiệm )