Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
a) Ta có : \(x\ne1\)
Vì \(x\inℤ\Rightarrow\frac{3-x}{x-1}\inℤ\Leftrightarrow\hept{\begin{cases}3-x\inℤ\\x-1\inℤ\end{cases}}\)
Mà \(\frac{3-x}{x-1}=\frac{-x+3}{x-1}=\frac{-x+1+2}{x-1}=\frac{-\left(x-1\right)+2}{x-1}=-1+\frac{2}{x-1}\)
Lại có : \(-1\inℤ\Rightarrow E\inℤ\Leftrightarrow\frac{2}{x-1}\inℤ\Leftrightarrow2⋮x-1\)
\(\Rightarrow x-1\inƯ\left(2\right)\)
\(\Rightarrow x-1\in\left\{\pm1;\pm2\right\}\)
Lập bảng xét 2 trường hợp ta có :
\(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) |
\(x\) | \(2\) | \(0\) | \(3\) | \(-1\) |
Vậy \(x\in\left\{2;0;3;-1\right\}\)
a. Ta có:
\(M=\frac{x+3}{x-2}=\frac{x-2+2+3}{x-2}=\frac{x-2}{x-2}+\frac{2+3}{x-2}=1+\frac{5}{x-2}\)
- Để M nguyên thì 5 phải chia hết x - 2
\(\Rightarrow\)x - 2 \(\in\)Ư(5) = {-5;-1;1;5}
\(\Rightarrow\)x \(\in\){-3;1;3;7}
Vậy:...
a, \(\frac{x-2+5}{x-2}=1+\frac{5}{x-2}\)
\(\Rightarrow x-2\in\text{Ư}\left(5\right)=\left(+-1;+-5\right)\)
Lập bảng (tự tính nhé)
b, Vì tử thức =5 >0 (dương không đổi )
\(\Rightarrow x-2\)đạt GTLN
Suy ra \(x-2=-1\)
\(\Rightarrow x=1\)
Vậy MinM=-4 \(\Leftrightarrow x=1\)
Hok tốt
A=3x-17/4-x
=>(-1)A=17-3x/4-x
=>(-1)A=12-3x+5/4-x
=> (-1)A=3+(5/4-x)=>A=-3-(5/4-x)
Để A có GTNN=>-3-(5/4-x) có GTNN
=>5/4-x có GTLN
=>4-x có GTNN =>=>4-x=-5=>x=9
=>A=3.9-17/4-9
=>A=10/-5
=>A=-2
Vậy..........
Rap về bộ 3 (Naruto, One Piece) - Phan Ann - YouTube
điên à Crityano Thế Anh bạn ko làm ai mà tick cho bạn hả