Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}.\left(\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+...+\frac{4}{51.55}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)
\(\Rightarrow A=\frac{2}{4}\left(\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+.....+\frac{1}{51.55}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{1}{2}.\frac{4}{55}=\frac{2}{55}\)
\(VậyA=\frac{2}{55}\)
a) \(A=\frac{2}{11.15}+\frac{2}{15.19}+...+\frac{2}{51.55}\)
\(=\frac{1}{2}\left(\frac{4}{11.15}+\frac{4}{15.19}+...+\frac{4}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{15-11}{11.15}+\frac{19-15}{15.19}+...+\frac{55-51}{51.55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+...+\frac{1}{51}-\frac{1}{55}\right)\)
\(=\frac{1}{2}\left(\frac{1}{11}-\frac{1}{55}\right)=\frac{2}{55}\)
b) \(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.7.11.13\)suy ra đpcm.
\(\overline{abcabc}=1001.\overline{abc}=7.11.13.\overline{abc}\)
7, 11, 13 là các số nguyên tố
Câu 1:
a: \(A=\dfrac{1}{2}\left(\dfrac{4}{11\cdot15}+\dfrac{4}{15\cdot19}+...+\dfrac{4}{51\cdot55}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{11}-\dfrac{1}{15}+\dfrac{1}{15}-\dfrac{1}{19}+...+\dfrac{1}{51}-\dfrac{1}{55}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{4}{55}=\dfrac{2}{55}\)
\(B=\dfrac{-5}{3}\cdot\dfrac{11}{2}\cdot\dfrac{4}{3}=\dfrac{-220}{18}=\dfrac{-110}{9}\)
\(A\cdot B=\dfrac{2}{55}\cdot\dfrac{-110}{9}=\dfrac{-4}{9}\)
Câu 2:
a: |3-x|=x-5
=>|x-3|=x-5
\(\Leftrightarrow\left\{{}\begin{matrix}x>=5\\\left(x-5-x+3\right)\left(x-5+x-3\right)=0\end{matrix}\right.\Leftrightarrow x\in\varnothing\)
=\(1\left(\frac{1}{14.15}+\frac{1}{15.19}+......+\frac{1}{51.55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{15}\right)+\left(\frac{1}{15}-\frac{1}{19}\right).....+\left(\frac{1}{51}-\frac{1}{55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}....+\frac{1}{51}-\frac{1}{55}\right)\)
=\(1\left(\frac{1}{14}-\frac{1}{55}\right)\)
=\(1.\frac{41}{770}\)
=\(\frac{41}{770}\)