\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.......+\frac{1}{2006^2}\).Chứng minh:A...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Ta thấy : \(\frac{1}{4^2}< \frac{1}{4.5};\frac{1}{6^2}< \frac{1}{5.6};...;\frac{1}{2006^2}< \frac{1}{2005.2006}\)

\(\Rightarrow B=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2006^2}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{2005.2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2005}-\frac{1}{2006}\)

\(\Leftrightarrow B< \frac{1}{4}-\frac{1}{2006}=\frac{1001}{4012}\)

Mà \(\frac{1001}{4012}< \frac{334}{2007}\Rightarrow B< \frac{334}{2007}\)

2 tháng 3 2020

\(B< \frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2006.2008}\)

\(2B< \frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2006.2008}=\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2006}-\frac{1}{2008}=\frac{1}{4}-\frac{1}{2008}=\frac{501}{2008}\)\(B< \frac{501}{4016}< \frac{501}{4014}< \frac{668}{4014}=\frac{334}{2007}\)

Vậy:.....

25 tháng 2 2016

mik sẽ trả lời pạn sau nhé ..sorry mik pạn ti......

13 tháng 3 2017

Mai ơi! bạn khùng hả? ko trả lời thì thôi lại còn vào chỗ trả lời để sorry

22 tháng 7 2019

Mik lười quá bạn tham khảo câu 3 tại đây nhé:

Câu hỏi của nguyen linh nhi - Toán lớp 6 - Học toán với OnlineMath

22 tháng 7 2019

\(S=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+...+\frac{1}{37\cdot38\cdot39}\)

\(2S=\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{37\cdot38}-\frac{1}{38\cdot39}\)

\(2S=\frac{1}{2}-\frac{1}{38\cdot39}\)

\(S=\frac{1}{4}-\frac{1}{2\cdot38\cdot39}< \frac{1}{4}\)

17 tháng 9 2024

có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 +  2^10]

Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]

Q = 2 . 3+2^3 .3 +... + 2^9 .3

Q = 3. [ 2 + 2^3 +... + 2^9]

Vậy Q chia hết cho 3

28 tháng 9 2019

Tham khảo:

undefined