Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. ĐK \(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)
a. Ta có \(R=\left(\frac{\sqrt{x}}{\sqrt{x}-2}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right).\left(\frac{1}{\sqrt{x}+2}+\frac{4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right)\)
\(=\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}-2+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow R=\frac{\sqrt{4+2\sqrt{3}}+2}{\sqrt{4+2\sqrt{3}}\left(\sqrt{4+2\sqrt{3}}-2\right)}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+2}{\sqrt{\left(\sqrt{3}+1\right)^2}\left(\sqrt{\left(\sqrt{3}+1\right)^2}-2\right)}\)
\(=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{\sqrt{3}+3}{3-1}=\frac{\sqrt{3}+3}{2}\)
c. Để \(R>0\Rightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Rightarrow\sqrt{x}-2>0\Rightarrow x>4\)
Vậy \(x>4\)thì \(R>0\)
2. Ta có \(A=6+2\sqrt{2}=6+\sqrt{8};B=9=6+3=6+\sqrt{9}\)
Vì \(\sqrt{8}< \sqrt{9}\Rightarrow A< B\)
3. a. \(VT=\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}:\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}.\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)=a-b=VP\left(đpcm\right)\)
b. Ta có \(VT=\left(2+\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right).\left(2-\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\)
\(=\left(2+\sqrt{a}\right)\left(2-\sqrt{a}\right)=4-a=VP\left(đpcm\right)\)
Ta co:
\(a^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{32}\)
\(=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{16}\)
\(\Rightarrow\sqrt{8}a^2=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}\)
Ta lại co:
\(8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)
\(\Leftrightarrow2\sqrt{2}a^2=1-a\)
\(\Leftrightarrow8a^4=a^2-2a+1\)
Từ đề bài co:
\(\sqrt{8}M=\sqrt{8}a^2+\sqrt{8a^4+8a+8}\)
\(=\sqrt{8}a^2+\sqrt{a^2-2a+1+8a+8}\)
\(=\sqrt{8}a^2+a+3\)
\(=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}+\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}+3\)
\(=4\)
\(\Rightarrow M=\sqrt{2}\)
CM: \(a=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}\Rightarrow a+\frac{\sqrt{2}}{8}=\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow\left(a+\frac{\sqrt{2}}{8}\right)^2=\left(\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}\right)^2\)\(\Leftrightarrow a^2+\frac{a\sqrt{2}}{4}+\frac{1}{32}=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)\Leftrightarrow a^2+\frac{2\sqrt{a}}{4}+\frac{1}{32}=\frac{\sqrt{2}}{4}+\frac{1}{32}\)
\(\Leftrightarrow4a^2+\sqrt{2}a-\sqrt{2}=0\)
Theo trên: \(4a^2+\sqrt{2}a-\sqrt{2}=0\Rightarrow a^2=\frac{\sqrt{2}\left(1-a\right)}{4}\Rightarrow a^4=\frac{a^2-2a+1}{8}\)
\(\Rightarrow a^4+a+1=\frac{a^2-2a+1}{8}+a+1=\left(\frac{a+3}{2\sqrt{2}}\right)^2\)
\(B=a^2+\sqrt{a^4+a+1}=a^2+\frac{a+3}{2\sqrt{2}}=\frac{2\sqrt{2}a^2+a+3}{2\sqrt{2}}\)\(=\frac{4a^2+\sqrt{2}a+3\sqrt{2}}{4}=\frac{4\sqrt{2}}{4}=\sqrt{2}\)