Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải tương tự như câu hôm qua mình giải
để chứng minh A < \(\frac{1}{10}\). Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)
\(\Rightarrow A^2< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)\)
\(=\frac{1.\left(3.5...99\right)}{2.4.6...100}.\frac{2.4.6...100}{\left(3.5.7...99\right).101}\)
\(=\frac{1}{101}< \frac{1}{10}\)
\(\Rightarrow A^2< \frac{1}{101}< \frac{1}{100}=\frac{1}{10^2}\Rightarrow A< \frac{1}{10}\)
để chứng minh A > \(\frac{1}{15}\). Ta thấy \(A>\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\)
\(\Rightarrow A^2>\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{1}{2}.\frac{2}{3}.\frac{4}{5}...\frac{98}{99}\right)\)
\(=\frac{1.\left(3.5...99\right)}{\left(2.4.6...98\right).100}.\frac{1.\left(2.4...98\right)}{2.\left(3.5...99\right)}\)
\(=\frac{1}{100}.\frac{1}{2}=\frac{1}{200}\)
\(\Rightarrow A^2>\frac{1}{200}>\frac{1}{225}=\frac{1}{15^2}\Rightarrow A>\frac{1}{15}\)
đặt \(A=\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}\)
Ta có :
\(A< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\)
Lại có :
\(A>\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}=\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\)
để chứng minh A > \(\frac{4}{3}\)ta tách tổng A thành 3 nhóm :
A = \(\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{70}\right)\)
A > \(\frac{1}{30}.20+\frac{1}{50}.20+\frac{1}{70}.20=\frac{2}{3}+\frac{2}{5}+\frac{2}{7}=1\frac{37}{105}>1\frac{35}{105}=1\frac{1}{3}=\frac{4}{3}\)
để chứng minh A < 2,5 ta tách tổng A thành 6 nhóm :
A = \(\left(\frac{1}{11}+...+\frac{1}{20}\right)+\left(\frac{1}{21}+...+\frac{1}{30}\right)+\left(\frac{1}{31}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+...+\frac{1}{50}\right)+\left(\frac{1}{51}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{70}\right)\)
A < \(\frac{1}{11}.10+\frac{1}{21}.10+\frac{1}{31}.10+\frac{1}{41}.10+\frac{1}{51}.10+\frac{1}{61}.10< 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\right)+\left(\frac{1}{4}+\frac{1}{5}\right)< 2+0,5=2,5\)
Bạn có hiểu không chi le hay để mình giải thích cho
Ta tách biểu thức thành 7 nhóm , t CÓ các nhóm sau :
- \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+...+\(\frac{1}{20}\)
- .....
Ta thấy tất cả các phân số trên đều > hơn \(\frac{1}{20}\)
=> \(\frac{1}{11}\)+\(\frac{1}{12}\)+\(\frac{1}{13}\)+....+\(\frac{1}{20}\)> \(\frac{10}{20}\)=\(\frac{1}{2}\) ( VÌ CÓ 10 phân số đều lớn hơn hoặc = \(\frac{1}{20}\))
Tương tự với 7 nhóm còn lại mỗi nhóm gồm 10 phân số ta được các phân số \(\frac{1}{3}\),\(\frac{1}{4}\),\(\frac{1}{5},\frac{1}{6},\frac{1}{7}\)
Ta cộng tổng các p/s \(\frac{1}{3},\frac{1}{4}\frac{1}{5},\frac{1}{6},\frac{1}{7}\)ta được p/s \(\frac{223}{140}>\frac{4}{3}\)
=> ĐIỀU PHẢI CHỨNG MINH
Mk chỉ làm được ở chỗ 4/3 < A thôi
Vậy nhé bạn yêu wys!!!!!!!!!!!!!!
dễ
gọi Biểu thức A là ( 1 )
biểu thức A là tích của 250 phân số nhỏ hơn 1, trong đó các tử đều lẻ, các mẫu đều chẵn. Ta đưa ra biểu thức trung gian là một tích các phân số mà các tử đều chẵn, các mẫu đều lẻ. thêm 1 vào tử và mẫu của mỗi phân số của A, giá trị mỗi phân số tăng thêm, do đó
A < \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{500}{501}\)( 2 )
Nhân ( 1 ) với ( 2 ) theo từng vế ta được :
\(A^2< \left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{499}{500}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{500}{501}\right)=\frac{1.\left(3.5...499\right)}{2.4.6...500}.\frac{2.4.6...500}{\left(3.5.7...499\right).501}=\frac{1}{501}\)
Vậy \(A^2< \frac{1}{501}\)
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
\(\Rightarrow A< 1\)
ta có:
A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+....+\(\frac{1}{100^2}\)< B=\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+.....+\(\frac{1}{99.100}\)
B=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+........+\(\frac{1}{99}\)-1/100
B=1-1/100=99/100<1
Vì a<b mà B lại bé hơn 1 =>A<1
\(\frac{x}{7}=\frac{x+1}{14}\Leftrightarrow14x=7x+7\Leftrightarrow7x=7\Leftrightarrow x=1\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{15}{4}+\frac{18}{8}\)
\(\Leftrightarrow1\le x\le6\Leftrightarrow x=1;2;3;4;5;6\)
\(\frac{1}{2}+\frac{-3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
\(\Leftrightarrow\frac{1}{2}-\frac{3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
\(\Leftrightarrow0\le x\le5\Leftrightarrow x=0;1;2;3;4;5\)
\(\frac{x}{7}=\frac{x+1}{14}\)
=> \(\frac{x\cdot2}{7\cdot2}=\frac{x+1}{14}\)
=> \(2x=x+1\)
=> \(2x-x-1=0\)
=> \(1x-1=0\)
=> \(x=1\)
\(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}\le x\le\frac{15}{4}+\frac{18}{8}\)
=> \(1\le x\le6\)
=> \(x=\left\{1;2;3;4;5;6\right\}\)
\(\frac{1}{2}+\frac{-3}{5}+\frac{1}{10}\le x\le\frac{8}{3}+\frac{14}{6}\)
=> \(0\le x\le5\)
=> \(x=\left\{0;1;2;3;4;5\right\}\)
a) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{45^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}\)
\(A< 1-\frac{1}{45}< 1\)
\(A< 1\)
CMR là gì vậy chị nếu em biết được thì có thể giải giùm chị em có công thức đây(lớp 5)