Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đầu bài ta có:
\(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+...+\frac{1}{2450}\)
\(\Leftrightarrow A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)
\(\Leftrightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Leftrightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(\Leftrightarrow A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}=B\)
\(\Rightarrow\frac{A}{B}=1\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
Xét vế trái
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)= vế phải
\(\Rightarrow\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\) (Đpcm)
Ta có :
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Gửi link thì bị lỗi, thôi nhai lại v:
Xét VT__Ta có: \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}-2\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+..+\frac{1}{50}\right)\)
\(=\) \(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{50}-1+\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}.....+\frac{1}{50}-\frac{1}{2}-\frac{1}{3}-\frac{1}{4}-....-\frac{1}{25}\)
\(=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+.......+\frac{1}{50}\)
a, \(\frac{3}{5}+\frac{-1}{3}\)
=\(\frac{9}{15}+\frac{-5}{15}\)
=\(\frac{4}{15}\)
b,\(\frac{-2}{13}+\frac{-11}{26}\)
=\(\frac{-4}{26}+\frac{-11}{26}\)
=\(\frac{-15}{26}\)
c, \(-2+\frac{-5}{8}\)
=\(\frac{-16}{8}+\frac{-5}{8}\)
=\(\frac{-21}{8}\)
d,\(\frac{13}{30}-\frac{1}{5}\)
=\(\frac{13}{30}-\frac{6}{30}\)
=\(\frac{7}{30}\)
e,\(\frac{2}{21}-\frac{-1}{28}\)
=\(\frac{56}{588}-\frac{-21}{588}\)
=\(\frac{77}{588}=\frac{11}{84}\)
bài dễ mà <3
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Chứng tỏ ...
A = 1/2 + 1/12 + 1/30 + ... + 1/2450
A = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
A = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
A = (1 + 1/3 + 1/5 + ... + 1/49) - (1/2 + 1/4 + 1/6 + ... + 1/50)
A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)
A = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)
A = 1/26 + 1/27 + 1/28 + ... + 1/50 = B
=> A:B = 1
\(A=\frac{1}{2}+\frac{1}{12}+\frac{1}{30}+....+\frac{1}{2450}\)
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{50}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}=B\)
Vậy A = B