\(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)

chứng minh A<1

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 5 2017

TA CÓ:

     A = \(\frac{1}{2^2}+\frac{2}{2^3}+...+\frac{2016}{2^{2017}}\)

=> 2A = \(\frac{2.1}{2^2}+\frac{2.2}{2^3}+...+\frac{2016.2}{2^{2017}}\)

        = \(\frac{1}{2}+\frac{2}{2^2}+...+\frac{2016}{2^{2016}}\)

=> 2A - A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)

=> A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2016}}-\frac{2016}{2^{2017}}\)

ĐẶT B = \(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2016}}\)

TA CÓ 2B = \(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

=> 2B - B = B = \(1-\frac{1}{2^{2016}}< 1\)

=> A < 1   ( ĐPCM)

19 tháng 8 2016

Bạn làm tương tự như thế này nhé! http://olm.vn/hoi-dap/question/72512.html ok

19 tháng 8 2016

Ta có

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{2016^2}\)

\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2.3}+......+\frac{1}{2015.2016}\)

\(\Rightarrow A< 1+\frac{1}{4}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A< 1\frac{3}{4}-\frac{1}{2016}< 1\frac{3}{4}\)

=> đpcm

20 tháng 8 2016

bài này hình như có nguoif đăg rùi mà 

16 tháng 1 2018

\(B=\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

\(B=2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}\)

\(B=1+\left(\frac{2015}{2}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)\)

\(B=\frac{2017}{2017}+\frac{2017}{2}+...+\frac{2017}{2015}+\frac{2017}{2016}\)

\(B=2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}+\frac{1}{2017}\right)\)

\(\frac{B}{A}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{2}{2017}}=2017\)

15 tháng 2 2020

Vậy \(\frac{A}{B}=\frac{1}{2017}.\)

Chúc bạn học tốt!