Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(15\frac{1}{4}:\left(-\frac{2}{3}\right)+5\frac{1}{4}:\left(-\frac{2}{3}\right)+\frac{1}{2}\)
\(=\left(15\frac{1}{4}+5\frac{1}{4}\right):\left(-\frac{2}{3}\right)+\frac{1}{2}\)
\(=-\frac{123}{4}+\frac{1}{2}\)
\(=-\frac{121}{4}\)
a/\(\left(2-x\right)\times-3=\left(3x-1\right)\times4\)4
\(\Rightarrow-6+3x=12x-4\)
\(\Rightarrow-2=9x\)
\(\Rightarrow x=\frac{-2}{9}\)
bài b cx tương tự nha
ta có;\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}=\frac{a+b}{c+d}\)(THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU)
\(\Rightarrowđpcm\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{1990^2}\)
\(A< \frac{1}{2^2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1989.1990}\)
\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1989}-\frac{1}{1990}\)
\(A< \frac{1}{4}+\frac{1}{2}-\frac{1}{1990}< \frac{1}{4}+\frac{1}{2}\)
\(A< \frac{1}{4}+\frac{2}{4}=\frac{3}{4}\left(đpcm\right)\)
thank bạn nhiều lắm