Cho A=...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2021

D.7 nha!

d .7 nha bn 

chúc bn hok tốt

5 tháng 7 2021

cho 5 nha

5 tháng 7 2021

chia hết cho 5 nha k hộ mk

15 tháng 7 2021

x-y theo đề bài là 34 sẵn r mà :))

15 tháng 7 2021
  1. Đơn giản biểu thức

    1. Giải phương trình

    2. Giải phương trình

    3.  
     
 
27 tháng 4 2019

Ta có : 4x + y = 1 => y = 1 - 4x

=> 4x^2 + y^2 = 4x^2 + ( 1 - 4x )^2 = 20x^2 - 8x + 1 = 4 ( 5x^2 - 2x ) + 1 = 4/5 ( 25x^2 - 10x + 1 ) + 1/5 = 4/5 ( 5x-1 )^2 +1/5

Ta có : ( 5x-1)^2 >= 0 

=> 4/5 ( 5x-1)^2 +1/5 >= 0 + 1/5 = 1/5

Vậy 4x^2 + y^2 >= 1/5. Dấu "=" xảy ra <=> x= 1/5

28 tháng 4 2019

Áp dụng BĐT Bunhiacopxki ta có:

\(\left[\left(2x\right)^2+y^2\right].\left(2^2+1\right)\ge\left(4x+y\right)^2=1\)

\(\Leftrightarrow4x^2+y^2\ge\frac{1}{5}\)

Dấu " = " xảy ra <=> \(\frac{2x}{2}=y\Leftrightarrow x=y=0,2\)

11 tháng 10 2016

Ta có : \(\frac{1}{1-ab}=1+\frac{ab}{1-ab}\le1+\frac{ab}{1-\frac{a^2+b^2}{2}}=1+\frac{2ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\)

\(\le1+\frac{a.b}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}\right)\)

Tương tự , ta chứng minh được \(\frac{1}{1-bc}\le1+\frac{1}{2}\left(\frac{b^2}{b^2+a^2}+\frac{c^2}{c^2+a^2}\right)\)

\(\frac{1}{1-ac}\le1+\frac{1}{2}\left(\frac{a^2}{a^2+b^2}+\frac{c^2}{c^2+b^2}\right)\)

Cộng theo vế : \(\frac{1}{1-ab}+\frac{1}{1-bc}+\frac{1}{1-ca}\le3+\frac{1}{2}\left(\frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}\right)=\frac{9}{2}\)