Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để phân số \(\frac{12}{3n-1}\)có giá trị là 1 số nguyên
\(\Rightarrow\)12\(⋮\)3n-1
\(\Rightarrow3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm12\right\}\)
Tiếp theo bạn tìm số nguyên n như thường, nếu có giá trị là phân số thì bỏ nên bạn tự làm nhé!
b) Để phân số \(\frac{2n+3}{7}\)có giá trị là 1 số nguyên
\(\Rightarrow\)2n+3\(⋮\)7
\(\Rightarrow\)2n+3=7k
\(\Rightarrow n=\frac{7k-3}{2}\)
A = 3n - 6061/x - 2020
để A nguyên
=> 3x - 6061 chia hết cho x - 2020
=> 3x - 6060 - 1 chia hết cho x - 2020
=> 1 chia hết cho x - 2020
=> x - 2020 thuộc {-1; 1}
=> x - 2020 thuộc {2019; 2021}
a. Tìm n để B tồn tại.
Để B tồn tại thì \(n-3\ne0\Leftrightarrow n\ne3\)
b. Tìm n để B là một số nguyên.
Để B là một số nguyên thì \(\frac{4}{n-3}\in Z\)
\(\Rightarrow n-3\in\left\{1;2;4;-1;-2;-4\right\}\)
\(\Leftrightarrow n\in\left\{4;5;7;2;1;-1\right\}\)
a. Ta có:
\(\frac{8n+193}{4n+3}=\frac{2.4n+2.3+187}{4n+3}\)
\(=\frac{2.\left(4n+3\right)+187}{4n+3}\)
\(=2+\frac{187}{4n+3}\)
Để M có giá trị là số tự nhiên thì \(4n+3\)phải là ước tự nhiên của \(187=\left\{1;11;17;187\right\}\)
\(\left(+\right)4n+3=1\Rightarrow4n=1-3=-2\Leftrightarrow n=-\frac{1}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=11\Rightarrow4n=11-3=8\Leftrightarrow n=2\)( thỏa mãn )
\(\left(+\right)4n+3=17\Rightarrow4n=14\Leftrightarrow n=\frac{7}{2}\)( không thỏa mãn n là số tự nhiên )
\(\left(+\right)4n+3=187\Rightarrow4n=187-3=184\Leftrightarrow n=46\)( thỏa mãn )
Vậy \(n\in\left\{2;46\right\}.\)
b. Gọi ước chung của 8n + 193 và 4n + 3 là d
Ta có:
\(\hept{\begin{cases}8n+193⋮d\\4n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}8n+193⋮d\\2\left(4n+3\right)⋮d\end{cases}}\)
\(\Rightarrow8n+193-2\left(4n+3\right)⋮d\)
\(\Leftrightarrow187⋮d\)
\(\Rightarrow d\inƯ\left(187\right)=\left\{1;11;17;187\right\}\)
Thử:
\(n=156\Rightarrow M=\frac{77}{19}\)
\(n=165\Rightarrow M=\frac{89}{39}\)
\(n=167\Rightarrow M=\frac{139}{61}.\)
\(M=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\inℕ^∗\Rightarrow\frac{187}{4n+3}\inℕ^∗\)
Vì \(n\inℕ^∗\Rightarrow4n+3\inℕ^∗\Rightarrow4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{\pm1;\pm11;\pm17;\pm187\right\}\)
\(\Rightarrow n\in\left\{-1;2;-5;46\right\}\)
b. M rút gọn được <=> \(\frac{187}{4n+3}\)rút gọn được => 4n+3 chia hết cho 11, 17 hoặc 187
Mà \(150\le n\le170\Rightarrow603\le4n+3\le683\)
Ta có: trong khoảng từ 603 -> 683 chỉ có:
+ 605, 616, ..., 682 chia hết cho 11 => 4n+3 \(\in\){605, 616, ..., 682} => Tìm n
+ 612, 629, ..., 680 chia hết cho 17 => \(4n+3\in\left\{612,629,...,680\right\}\)=> tìm n
+ không có số nào chia hết cho 187
để ps A nguyên thì n+3 chia hết cho n-2
suy ra (n-2)+5 chia hết cho n-2
suy ra 5 chia hết cho n-2
suy ra n-2 thuộc {1;-1;5;-5}
n thuộc {3;1;7;-3}
2)có 1/(a+1)+1/a.(a+1)=a.(a+1)/[(a+1).a.(a+1)]+(a+1)/[(a+1).a.(a+1)](nhân chéo)=a.(a+1)+(a+1)/a.(a+1).(a+1)=(a+1)(a+1)/a.(a+1).(a+1)=1/a
áp dụng :1/5=1/(5+1)+1/5.(5+1)=1/6+1/30
1.
A=\(\frac{n-2+5}{n+2}\)có công thức \(\frac{a}{c}+\frac{b}{c}=\frac{a+b}{c}\)
A=\(1+\frac{5}{n-2}\)
Ư(5)={-5;-1;1;5}
thay giô các kết quả
n-2=-5
n=-2 ( chọn)
n-2=-1
n= 1 (chọn)
n-2=1
n=3 (chọn)
n-2=5
n=7 (chọn)
vậy n= -2;1;3;7
2.
\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
ta biến đổi \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)thành \(\frac{1}{a}\)
ta thấy trong \(\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)có về 2 gấp vế trước a lần
ta quy đồng \(\frac{a}{a.\left(a+1\right)}+\frac{1}{a\left(a+1\right)}=\frac{a+1}{a.\left(a+1\right)}\)cùng có a+1 ở tử và mẫu ta cùng gạch thì nó thành
\(\frac{1}{a}\)
vậy :\(\frac{1}{a}=\frac{1}{a+1}+\frac{1}{a\left(a+1\right)}\)
A nguyen suy ra 2n+3 chia het cho n-2
suy ra 2n-4+7 chia het cho n-2 suy ra 2[n-2] +7 chia het cho n-2 suy ra 7 chia het cho n-2
n thuoc tap hop [3 ,1 ,9,-5]
hoc tot
Để \(\frac{2n+5}{n+3}\)là số tự nhiên thì :\(2n+5⋮n+3\)
\(\hept{\begin{cases}2n+5⋮n+3\\n+3⋮n+3\end{cases}}\)\(=>\hept{\begin{cases}2n+5⋮n+3\\2n+6⋮n+3\end{cases}=>2n+6-2n-5⋮n+3}\)
(=) 1\(⋮\)n+3
=> n+3\(\in\)Ư(1)
=> n ko tồn tại
\(Tadellco::\left(\right)\left(\right)\)
\(\frac{2n+5}{n+3}\in Z\Rightarrow2n+5⋮n+3\Rightarrow2\left(n+3\right)-\left(2n+5\right)=1⋮n+3\Rightarrow n+3\in\left\{1;-1\right\}\)
\(\Rightarrow n\in\left\{-4;-2\right\}\)
b, \(Tadellco\left(to\right)\left(rim\right)\)
\(\frac{1}{2^2}+\frac{1}{3^2}+.......+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{2}-.....-\frac{1}{100}\)
\(=1-\frac{1}{100}< 1\Rightarrow...........\)
Bài làm:
Ta có: \(A=\frac{3n-6061}{n-2020}=\frac{\left(3n-6060\right)-1}{n-2020}=\frac{3\left(n-2020\right)}{n-2020}-\frac{1}{n-2020}=3-\frac{1}{n-2020}\)
Ta có 3 là 1 số nguyên nên để A là 1 số nguyên
\(\Rightarrow\frac{1}{n-2020}\inℤ\Rightarrow1⋮\left(n-2020\right)\)
\(\Rightarrow n-2020\inƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow n\in\left\{2019;2021\right\}\)
Vậy với n = 2019 hoặc n = 2021 thì A có giá trị là 1 số nguyên
Học tốt!!!!
a) n phải khác 2
b) để A nguyên thì
1 chia hết cho 2-n
=> 2-n thuộc tập ước của 1
=> hoặc 2-n=1 =>n=1
hoặc 2-n=-1 =>n=3
hk tốt
a) Để A là phân số thì \(2-n\ne0\)
\(\Leftrightarrow n\ne2\)
b) Để A nguyên thì \(1⋮\left(2-n\right)\)
\(\Leftrightarrow2-n\inƯ\left(1\right)=\left\{\pm1\right\}\)
Lập bảng:
Vậy n = 1 hoặc n = 3 thì A nguyên