Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2014-2012}{2012.2013.2014}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{2012.2013}-\frac{1}{2013.2014}$
$=\frac{1}{1.2}-\frac{1}{2013.2014}< \frac{1}{2}$
$\Rightarrow A< \frac{1}{2}:2$
Hay $A< \frac{1}{4}$
Ta có \(\frac{2012.2013}{2012.2013+1}\)và \(\frac{2013}{2012}\)
Vì \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)
nên \(\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)
\(\frac{2012}{2013}\)và \(\frac{2011}{2012}\)
phàn bù của \(\frac{2012}{2013}\)là \(\frac{1}{2013}\)
phàn bù của \(\frac{2011}{2012}\)là \(\frac{1}{2012}\)
Vì \(\frac{1}{2012}>\frac{1}{2013}\Rightarrow\frac{2012}{2013}>\frac{2011}{2012}\)
Ta có : \(\frac{2012\cdot2013}{2012\cdot2013+1}< 1\)
\(\frac{2013}{2012}>1\)
\(\Rightarrow\frac{2012\cdot2013}{2012\cdot2013+1}< \frac{2013}{2012}\)
Có : \(\frac{2012}{2013}=1-\frac{2012}{2013}=\frac{2013}{2013}-\frac{2012}{2013}=\frac{1}{2013}\)
\(\frac{2011}{2012}=1-\frac{2011}{2012}=\frac{2012}{2012}-\frac{2011}{2012}=\frac{1}{2012}\)
Vì \(2013< 2012\)nên \(\frac{1}{2013}< \frac{1}{2012}\)hay \(\frac{2012}{2013}< \frac{2011}{2012}\)
Bài làm
\(A=\frac{2011.2012-1}{2011.2012}\) và \(B=\frac{2012.2013-1}{2012.2013}\)
Ta có:
\(A=\frac{2011.2012-1}{2011.2012}\)
\(A=\frac{2011.2012-1.1-1.1}{2011.2012}\)
\(A=\frac{2011.2012-1.\left(1-1\right)}{2011.2012}\)
\(A=\frac{2011.2012-1.0}{2011.2012}\)
\(A=\frac{2011.2012-0}{2011.2012}\)
\(A=\frac{2011.2012}{2011.2012}\)
\(A=1\)
\(B=\frac{2012.2013-1}{2012.2013}\)
\(B=\frac{2012.2013-1.1-1.1}{2012.2013}\)
\(B=\frac{2012.2013-1.\left(1-1\right)}{2012.2013}\)
\(B=\frac{2012.2013-1.0}{2012.2013}\)
\(B=\frac{2012.2013-0}{2012.2013}\)
\(B=\frac{2012.2013}{2012.2013}\)
\(B=1\)
Vì 1 = 1
=> A = B
Hay
\(A=\frac{2011.2012-1}{2011.2012}\)= \(B=\frac{2012.2013-1}{2012.2013}\)
Vậy \(A=\frac{2011.2012-1}{2011.2012}\)= \(B=\frac{2012.2013-1}{2012.2013}\)
# Chúc bạn học tốt #
Ta có : A =( 2011.2012-1)/(2011.2012) = (2011.2012)/(2011.2012) - 1/(2011.2012) = 1 - (1/2011.2012)
B =( 2012.2013-1)/(2012.2013) = (2012.2013)/(2012.2013) - 1/(2012.2013) = 1 - (1/2012.2013)
Ta thấy : 1/(2011.2012)>1/(2012.2013)(vì chung tử số là 1 , mẫu số : 2011.2012 < 2012.2013)
Suy ra , 1-(1/2011.2012)<1-(1/2012.2013)
Suy tiếp : A < B
a. Ta có
\(B=\frac{2011+2012}{2012+2013}=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}.\)
Vì\(\frac{2011}{2012+2013}< \frac{2011}{2012}.\)(1)
\(\frac{2012}{2012+2013}< \frac{2012}{2013}.\)(2)
Cộng vế với vế của 1;2 ta được
\(B=\frac{2011}{2012+2013}+\frac{2012}{2012+2013}< A=\frac{2011}{2012}+\frac{2012}{2013}\)
hay A>B
Bài 5:
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}< 1\)
Vậy A<1.
Bài 4: Bn ghi nhầm đề rồi.
Đề đúng: \(A=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{2011.2013}\)
\(\frac{1}{2}A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{2011.2013}\)
\(\frac{1}{2}A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2011}-\frac{1}{2013}\)
\(\frac{1}{2}A=1-\frac{1}{2013}\)
\(A=2.\frac{2012}{2013}=\frac{4024}{2013}\)
c)\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2012}}\)
\(2A=2\left(1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{2012}}\right)\)
\(2A=2+1+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{2011}}\)
\(2A-A=\left(2+1+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{2011}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....\frac{1}{2^{2012}}\right)\)
\(A=2-\frac{1}{2^{2012}}\)
1/
A=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1/1-1/100
Vì 1/100>0
-->1/1-1/100<1
-->A<1
\(A=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2013}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(=\left(1+\frac{1}{2}+...+\frac{1}{2014}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1007}\right)\)
\(=\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\)
\(B=\frac{1}{1008.2014}+\frac{1}{1009.2013}+...+\frac{1}{2014.1008}\)
\(=\frac{1}{3022}\left(\frac{3022}{1008.2014}+\frac{3022}{1009.2013}+...+\frac{3022}{2014.1008}\right)\)
\(=\frac{1}{3022}\left(\frac{1008}{1008.2014}+\frac{2014}{1008.2014}+...+\frac{2014}{1008.2014}+\frac{1008}{1008.2014}\right)\)
\(=\frac{1}{3022}\left(\frac{1}{1008}+\frac{1}{2014}+\frac{1}{1009}+\frac{1}{2013}+...+\frac{1}{2014}+\frac{1}{1008}\right)\)
\(=\frac{2}{3022}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)
\(=\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)\)
=> \(\frac{A}{B}=\frac{\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}}{\frac{1}{1511}\left(\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2014}\right)}=\frac{1}{\frac{1}{1511}}=1511\)
Vậy....
1,
Tỉ số giữa 10 quyển và 15 quyển:
10: 15 = 2/3
Nếu chia đều thì mỗi bạn nhận đc:
[15x 2 + 10x3] : [2+3] = 12 [quyển]
Vậy:....................
2,
1/2 + 1/3 + 1/4 + ... + 1/50 = [1 - 1/2] + [1-2/3] + ... + [1 - 49/50]
= 1 - 1/2 + 1 - 2/3 + ... + 1 - 49/50
= [1 + 1 + 1 +... + 1] - [1/2+2/3+3/4+...+49/50]
= 49 - [1/2+2/3+3/4+...+49/50]
Vậy 1/2 + 1/3 + 1/4 + ... + 1/50 không là số tự nhiên
3,
1/42 + 1/52 + ... +1/1002 < 1/3.4 + 1/4.5 + 1/5.6 + ... + 1/99.100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/99 - 1/100
<=> 1/42 + 1/52 + ... +1/1002 < 1/3 - 1/100
<=> E < 1/3 - 1/100
=> E < 1/3
Mà 1/3 - 1/100 = 97/300 > 1/5
=> 1/5 < E < 1/3
4, A:
2013/1 + 2014/2+2015/3+...+4023/2011+4024/2012 - 2012
= ( 2013/1 - 1)+(2014/2 - 1) + ( 2015/3 - 1)+...+ (4023/2011 - 1) + ( 4024/2012 - 1)
= 2012(1+1/2+1/3+...+ 1/2011+1/2012)
Vậy \(A=\frac{\text{(1+1/2+1/3+...+ 1/2011+1/2012)}}{\text{2012(1+1/2+1/3+...+ 1/2011+1/2012)}}=\frac{1}{2012}\)
Câu B mik sẽ làm sau, bây giờ mik bận
Tỉ số giữa 10 quyển và 15 quyển:
10:15=2/3
Vậy nếu chia cho cả lớp thì mõi bạn nhận được:
(15x2+10x3):5=12 quyển