Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{15^{16}+1}{15^{17}+1}\)và\(B=\frac{15^{15}+1}{15^{16}+1}\)
ta có \(A=\frac{15^{16}}{15^{17}}\)và\(B=\frac{15^{15}}{15^{16}}\)
ta dễ nhận thấy phần cơ số của hai phân số A và B = nhau
mà phần mũ của các lũy thừa phân số A đều lớn hơn phân số B
\(\Rightarrow\frac{15^{16}}{15^{17}}>\frac{15^{15}}{15^{16}}\)
\(\Rightarrow\frac{15^{16}+1}{15^{17}+1}>\frac{15^{15}+1}{15^{16}+1}\)
\(\Rightarrow A>B\)
\(A=\frac{15^{16}+1}{15^{17}+1}vaB=\frac{15^{15}+1}{15^{16}+1}\)
+)Ta thấy\(A=\frac{15^{16}+1}{15^{17}+1}< 1\)
\(\Rightarrow A< \frac{15^{16}+1+14}{15^{17}+1+14}=\frac{15^{16}+15}{15^{17}+15}=\frac{15.\left(15^{15}+1\right)}{15.\left(15^{15}+1\right)}=\frac{15^{15}+1}{15^{16}+1}=B\)
Vậy A<B
b)Đề sai
Chúc bạn học tốt
So sánh A và B biết A = \(\frac{100^{100}+1}{100^{ }^{99}+1}\)và B = \(\frac{100^{99}+1}{100^{98}+1}\)
Vì : 100100 > 10069
10099 > 10068
=> A > B
dễ thấy A<1. Áp dụng \(\frac{a}{b}\)< 1 thì \(\frac{a}{b}\)< \(\frac{a+c}{b+c}\), ta có :
A=\(\frac{^{100^{100}}+1}{^{ }100^{99}+1}\)< \(\frac{^{\left(100^{100}+1\right)+\left(100^{21}-1\right)}}{\left(100^{99}+1\right)+\left(100^{21}-1\right)}\)= \(\frac{100^{100}+100^{21}}{100^{99}+100^{21}}\)=\(\frac{100^{21}.\left(100^{69}+1\right)}{100^{21}.\left(100^{68}+1\right)}\)=\(\frac{100^{69}+1}{100^{68}+1}\)=B
Vậy A<B
\(a)\) Ta có :
\(\frac{1}{100}A=\frac{100^{2009}+1}{100^{2009}+100}=\frac{100^{2009}+100}{100^{2009}+100}-\frac{99}{100^{2009}+100}=1-\frac{99}{100^{2009}+100}\)
\(\frac{1}{100}B=\frac{100^{2010}+1}{100^{2010}+100}=\frac{100^{2010}+100}{100^{2010}+100}-\frac{99}{100^{2010}+100}=1-\frac{99}{100^{2010}+100}\)
Vì \(\frac{99}{100^{2009}+100}>\frac{99}{100^{2010}+100}\) nên \(1-\frac{99}{100^{2009}+100}< 1-\frac{99}{100^{2010}+100}\)
Do đó :
\(\frac{1}{100}A< \frac{1}{100}B\)\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
A = \(\frac{100^{100}+1}{100^{90}+1}\)
\(\frac{1}{100^{10}}A=\frac{100^{100}+1}{100^{100}+100^{10}}\)
\(\frac{1}{100^{10}}A=\frac{100^{100}+100^{10}-100^{10}+1}{100^{100}+100^{10}}\)
\(\frac{1}{100^{10}}A=1+\frac{-100^{10}+1}{100^{100}+100^{10}}\)
B = \(\frac{100^{99}+1}{100^{89}+1}\)
\(\frac{1}{100^{10}}B=\frac{100^{99}+1}{100^{99}+100^{10}}\)
\(\frac{1}{100^{10}}B=\frac{100^{99}+100^{10}-100^{10}+1}{100^{99}+100^{10}}\)
\(\frac{1}{100^{10}}B=1+\frac{-100^{10}+1}{100^{99}+100^{10}}\)
Vì \(\frac{-100^{10}+1}{100^{100}+100^{10}}< \frac{-100^{10}+1}{100^{99}+10^{10}}\)nên A < B
Ta dựa vào : \(\frac{a}{b}< \frac{a+1}{b+1}\)
Mà \(A=\frac{100^{1000}}{100^{900}}\); \(B=\frac{100^{1000}+1}{100^{900}+1}\)
\(\Rightarrow A< B\)