\(a=\dfrac{b.d}{b+c}\)và \(c=\dfrac{b.d}{b-d}\). chứng mi...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk\),\(c=dk\)

\(\dfrac{a^2}{b^2}=\dfrac{bk^2}{b^2}=k^2\left(1\right)\)

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ (1) và (2)=>\(\dfrac{a^2}{b^2}=\dfrac{ac}{bd}\)(đpcm)

19 tháng 8 2017

Đặt \(\dfrac{a}{b}=k;\dfrac{c}{d}=k\)

\(\Rightarrow a=kb;c=kd\)

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{bk^2}{b^2}=k^2\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{bkdk}{bd}=k^2\)

Từ các chứng minh trên cho ta thấy

\(\Rightarrow\dfrac{a^2}{b^2}=\dfrac{a.c}{b.d}\)

18 tháng 7 2018

Đặt :

\(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

14 tháng 10 2017

\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)

\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

\(\Rightarrow\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(1\right)\)

Ta lại có: \(\frac{a^3}{b^3}=\frac{a}{b}\cdot\frac{a}{b}\cdot\frac{a}{b}=\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{d}=\frac{a}{d}\left(2\right)\)

Từ (1) và (2) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

14 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)

\(c^2=\dfrac{b}{c}=\dfrac{c}{d}\)

Do đó: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

Do đó: \(\dfrac{a^3.b^3.c^3}{b^3.c^3.d^3}=\dfrac{a}{d}\left(đpcm\right)\)

Vậy ...............

Chúc bạn học tốt!

14 tháng 10 2017

Thanks, bạn cũng học tốt hihi

28 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=t\) \(\Rightarrow a=bt\);\(c=dt\)

rồi bạn thế vào điều phải chứng minh là ra

29 tháng 10 2017

Bn lm chi tiết từng bài giúp mk đc k

23 tháng 10 2018

\(b^2=a.c\)

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=b.d\)

\(\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\left(\dfrac{a+b-c}{b+c-d}\right)^3\)

\(=\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\left(\dfrac{a+b-c}{b+c-d}\right)^3=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\left(đpcm\right)\)

23 tháng 10 2018

-a^2 là ;a^2 nhé

4 tháng 11 2018

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a/ \(VT=\dfrac{a+b}{b}=\dfrac{bk+b}{b}=\dfrac{b\left(k+1\right)}{b}=k+1=\left(1\right)\)

\(VP=\dfrac{c+d}{d}=\dfrac{dk+d}{d}=\dfrac{d\left(k+1\right)}{d}=k+1\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\)

b/ \(VT=\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\left(1\right)\)

\(VP=\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{a-b}=\dfrac{c}{c-d}\)

c/ \(VT=\dfrac{2a-5b}{2c-5d}=\dfrac{2bk-5b}{2dk-5d}=\dfrac{b\left(2k-5\right)}{d\left(2k-5\right)}=\dfrac{b}{d}\left(1\right)\)

\(VP=\dfrac{3a+4b}{3c+4d}=\dfrac{3bk+4b}{3dk+4d}=\dfrac{b\left(3k+4\right)}{d\left(3k+4\right)}=\dfrac{b}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{2a-5b}{2c-5đ}=\dfrac{3a+4b}{3c+4d}\)

d/ \(VT=\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{\left(bk\right)^2-\left(dk\right)^2}{b^2-k^2}=\dfrac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\left(1\right)\)

\(VP=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a^2-c^2}{b^2-d^2}=\dfrac{ac}{bd}\)

4 tháng 11 2018

Hình như phải là cho \(\dfrac{a}{b}=\dfrac{c}{d}\) chứ