\(A=\dfrac{1}{1.101}+\dfrac{1}{2.102}+\dfrac{1}{3.103}+...+\dfrac{1}{25.125}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2017

Gọi x là thương A:B cần tìm.Theo đề, ta có:

\(\left(\dfrac{1}{1.26}+\dfrac{1}{2.27}+...+\dfrac{1}{100.125}\right)x=\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{25.125}\)

Nhân 2 vế cho 100, ta có:

\(4\left(\dfrac{25}{1.26}+\dfrac{25}{2.27}+...+\dfrac{25}{100.125}\right)x=\dfrac{100}{1.101}+\dfrac{100}{2.102}+...+\dfrac{100}{25.125}\)

\(\Rightarrow4\left(1-\dfrac{1}{26}+\dfrac{1}{2}-\dfrac{1}{27}+...+\dfrac{1}{100}-\dfrac{1}{125}\right)x=1-\dfrac{1}{101}+\dfrac{1}{2}-\dfrac{1}{102}+...+\dfrac{1}{25}-\dfrac{1}{125}\)

\(\Rightarrow4\left[\left(1+\dfrac{1}{2}+...+\dfrac{1}{100}\right)-\left(\dfrac{1}{26}+\dfrac{1}{27}+...+\dfrac{1}{125}\right)\right]x=\left(1+\dfrac{1}{2}+...+\dfrac{1}{25}\right)-\left(\dfrac{1}{101}+\dfrac{1}{102}+...+\dfrac{1}{125}\right)\)\(\Rightarrow4x=1\Rightarrow x=\dfrac{1}{4}\)

Vậy hiệu A:B là:\(\dfrac{1}{4}\)

b: \(\Leftrightarrow x-10\left(\dfrac{2}{11\cdot13}+\dfrac{2}{13\cdot15}+...+\dfrac{2}{53\cdot55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\left(\dfrac{1}{11}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{15}+...+\dfrac{1}{53}-\dfrac{1}{55}\right)=\dfrac{3}{11}\)

\(\Leftrightarrow x-10\cdot\dfrac{4}{55}=\dfrac{3}{11}\)

=>x=3/11+20/55=3/11+4/11=7/11

c: \(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-2}{98}-1\right)+\left(\dfrac{x-5}{95}-1\right)=\dfrac{1}{99}+\dfrac{1}{98}+\dfrac{1}{95}\)

\(\Leftrightarrow x-100=1\)

hay x=101

A) TÌM X, BIẾT: \(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\) B) CHỨNG TỎ RẰNG: a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\) b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\) c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\) d/ \(\dfrac{49}{100}<...
Đọc tiếp

A) TÌM X, BIẾT:

\(\left(\dfrac{1}{1.101}+\dfrac{1}{2.102}+...+\dfrac{1}{10.110}\right).x=\dfrac{1}{1.11}+\dfrac{1}{2.12}+...+\dfrac{1}{100.110}\)

B) CHỨNG TỎ RẰNG:

a/ \(S=\dfrac{1}{5}+\dfrac{1}{13}+\dfrac{1}{14}+\dfrac{1}{15}+\dfrac{1}{61}+\dfrac{1}{62}+\dfrac{1}{63}< \dfrac{1}{2}\)

b/ \(S=\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{80}>\dfrac{7}{12}\)

c/ \(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{20}}< 1\)

d/ \(\dfrac{49}{100}< S=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{99^2}< 1\)

C)

a/ Tìm giá trị lớn nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị lớn nhất:

\(A=2018-\left|10-x\right|\)

\(B=1999-\left(x+2\right)^2\)

b) Tìm giá trị nhỏ nhất của các biểu thức sau, đồng thời tìm x để các biểu thức này đạt giá trị nhỏ nhất:

\(A=\left(2x-8\right)^2+3\)

\(B=\left|x^2-25\right|-2017\)

1

Câu 3: 

a: \(A=-\left|x-10\right|+2018< =2018\)

Dấu '=' xảy ra khi x=10

\(B=-\left(x+2\right)^2+1999< =1999\)

Dấu '=' xảy ra khi x=-2

b: \(A=\left(2x-8\right)^2+3>=3\)

Dấu '=' xảy ra khi x=4

\(B=\left|x^2-25\right|-2017>=-2017\)

Dấu '=' xảy ra khi x=5 hoặc x=-5

18 tháng 6 2017

@Ace Legona

25 tháng 4 2018

Nhận thấy \(\)\(\dfrac{1}{1.1!}=1\); \(\dfrac{1}{2.2!}=\dfrac{1}{4}\)

Đặt \(P=\dfrac{1}{3.3!}+...+\dfrac{1}{2013.2013!}\)

\(P=\dfrac{1}{3.1.2.3}+...+\dfrac{1}{2013.1.2...2013}\)

\(P< \dfrac{1}{1.2.3}+...+\dfrac{1}{2011.2012.2013}\)

\(P< \dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{2011.2012}-\dfrac{1}{2012.2013}\right)\)

\(P< \dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2012.2013}\right)=\dfrac{1}{4}-\dfrac{1}{2.2012.2013}\)

\(P< \dfrac{1}{4}\)

\(A< \dfrac{1}{4}+\dfrac{1}{4}+1=\dfrac{3}{2}\left(đpcm\right)\)

9 tháng 5 2018

bạn chép gì vậy????hay là não bạn có vấn đề?

11 tháng 4 2018

Cho A = 1/2 .3/4.5/6.....199/200.Chứng tỏ rằng B mũ 2 <1/201.Bạn có làm dược ko ?

6 tháng 4 2017

a) \(\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{6}\right)\left(1-\dfrac{1}{10}\right)...\left(1-\dfrac{1}{780}\right)\)

\(=\dfrac{2}{3}.\dfrac{5}{6}.\dfrac{9}{10}.....\dfrac{779}{780}\)\(=\)

21 tháng 7 2018

\(a)\left(2\dfrac{5}{6}+1\dfrac{4}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{1}{2}\right)\)

\(=\left(\dfrac{17}{6}+\dfrac{13}{9}\right):\left(10\dfrac{1}{12}-9\dfrac{6}{12}\right)\)

\(=\left(\dfrac{153}{54}+\dfrac{78}{54}\right):\left(1\dfrac{-5}{12}\right)\)

\(=\dfrac{231}{54}:\dfrac{7}{12}\)

\(=\dfrac{198}{27}\)

21 tháng 7 2018

\(b)\dfrac{0,8\left(\dfrac{4}{5}:1,25\right)}{0,64-\dfrac{1}{25}}\)

\(=\dfrac{0,8\left(0,8:1,25\right)}{0,64-0,04}\)

\(=\dfrac{0,8.0,64}{0,6}\)

\(=\dfrac{0,512}{0,6}\)\(=\dfrac{64}{75}\)

20 tháng 6 2017

a) $A=\dfrac{1}{1.2}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}$

$=>A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1+\dfrac{1}{3}+...+\dfrac{1}{99})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100})$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{99}+\dfrac{1}{100})-(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}.2)$

$=>A=(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100})-(1+\dfrac{1}{2}+...+\dfrac{1}{50})$

$=>A=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}$

b) Ta có : $A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}$

$=>A=(1-\dfrac{1}{2}+\dfrac{1}{3})-(\dfrac{1}{4}-\dfrac{1}{5})-...-(\dfrac{1}{98}-\dfrac{1}{99})-\dfrac{1}{100}$

$=>A<1-\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}$

3 tháng 8 2018

\(7\dfrac{3}{10}=\dfrac{73}{10};9\dfrac{25}{100}=\dfrac{37}{4};3\dfrac{2}{5}=\dfrac{17}{5};7\dfrac{1}{4}=\dfrac{29}{4};1\dfrac{1}{25}=\dfrac{26}{5}\)

3 tháng 8 2018

a) \(7\dfrac{3}{10}=\dfrac{73}{10}=7.3\)

b)9\(\dfrac{25}{100}=9\dfrac{1}{4}=\dfrac{37}{4}=9.25\)

c)3\(\dfrac{2}{5}=\dfrac{12}{5}=2.4\)

d)\(7\dfrac{1}{4}=\dfrac{29}{4}=7.25\)

e)1\(\dfrac{1}{25}=\dfrac{26}{25}=1.04\)