K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2019

\(a+b=p;a-b=q\)

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)+\left(a-b\right)=p+q\\\left(a+b\right)-\left(a-b\right)=p-q\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2a=p+q\\2b=p-q\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{p+q}{2}\\b=\frac{p-q}{2}\end{cases}}\)

\(\Rightarrow a\times b=\frac{p+q}{2}\times\frac{p-q}{2}\)

\(\Rightarrow a\times b=\frac{\left(p+q\right)\left(p-q\right)}{4}\)

\(\Rightarrow a\times b=\frac{p^2-q^2}{4}\)

23 tháng 6 2019

thay vào là đc theo cach cơ bắp

10 tháng 2 2020

a) \(A< 0\Leftrightarrow\frac{x^2+3}{x-2}< 0\)

Mà \(x^2+3>0\Rightarrow x-2< 0\Leftrightarrow x< 2\)

b) \(A\inℤ\Leftrightarrow\frac{x^2+3}{x-2}\in Z\)

Ta có \(\frac{x^2+3}{x-2}=\frac{\left(x^2-4x+4\right)+\left(4x-8\right)+7}{x-2}\)

\(=x-2+4+\frac{7}{x-2}\)

\(\Rightarrow\frac{x^2+3}{x-2}\in Z\Leftrightarrow7⋮\left(x-2\right)\)

\(\Rightarrow x-2\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)

\(\Rightarrow x\in\left\{3;1;9;-5\right\}\)

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

10 tháng 8 2017

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

10 tháng 8 2017

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

a) \(A=3x+15=0\)

\(\Rightarrow3\left(x+5\right)=0\)

\(\Rightarrow x+5=0\)

\(\Rightarrow x=-5\)

b) \(B=2x^2-32=0\)

\(\Rightarrow2\left(x^2-16\right)=0\)

\(\Rightarrow\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-4=0\Rightarrow x=4\\x+4=0\Rightarrow x=-4\end{matrix}\right.\)

a: \(A=\left|x+1\right|+5\ge5\forall x\)

Dấu '=' xảy ra khi x=-1

b: \(B=\dfrac{x^2+3+12}{x^2+3}=1+\dfrac{12}{x^2+3}\le\dfrac{12}{3}+1=4+1=5\)

Dấu '=' xảy ra khi x=0