\(a+b\le2;a,b>0\). Tìm GTNN của \(Q=\frac{1}{a^2+b^2}+\frac{2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 3 2022

\(Q=\dfrac{1}{a^2+b^2}+\dfrac{1}{2ab}+\left(\dfrac{1}{ab}+ab\right)+\dfrac{1}{2ab}\)

\(Q\ge\dfrac{4}{a^2+b^2+2ab}+2\sqrt{\dfrac{ab}{ab}}+\dfrac{2}{\left(a+b\right)^2}\)

\(Q\ge\dfrac{6}{\left(a+b\right)^2}+2\ge\dfrac{6}{2^2}+2=\dfrac{7}{2}\)

\(Q_{min}=\dfrac{7}{2}\) khi \(a=b=1\)

25 tháng 4 2019

Đầu tiên,ta chứng minh BĐT phụ \(\frac{\left(x+y\right)^2}{2}\ge2xy\Leftrightarrow\frac{\left(x+y\right)^2-4xy}{2}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng).Dấu "=" xảy ra khi x = y.

Và BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\).Áp dụng BĐT AM-GM(Cô si),ta có; \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{\left(x+y\right)}{2}}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi x = y

\(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\)\(\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{2ab}\)

\(\ge\frac{4}{\left(a+b\right)^2}+\frac{1}{\frac{\left(a+b\right)^2}{2}}\ge4+\frac{1}{\frac{1}{2}}=6\)

Dấu "=" xảy ra khi a = b và a + b = 1 tức là a=b=1/2

Vậy Min P = 6 khi a = b = 1/2 

\(\left(a+b+c\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow1+2\left(ab+bc+ac\right)\ge0\)

\(\Leftrightarrow ab+bc+ac\ge\frac{1}{2}\)

\(\left(ab+bc+ac\right)^2\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(abbc+bcac+abac\right)\ge\frac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(a+b+c\right)\ge\frac{1}{4}\)

Đến đây bạn tự làm tiếp nha

7 tháng 9 2018

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}+\frac{1}{2ab+2bc+2ca}\)+2ca

Do a,b,c dương nên ADBĐT Cauchy ta được:

\(\frac{1}{a^2+b^2+c^2}+\frac{1}{2ab+2bc+2ca}\ge\frac{4}{(a+b+c)^2}=4\)

\(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\Rightarrow2ab+2bc+2ca\le\frac{2}{3}\)\(\Rightarrow\frac{1}{2ab+2bc+2ca}\ge\frac{3}{2}\)

Suy ra P\(\ge4+\frac{3}{2}=\frac{11}{2}\)

Dấu = khi a=b=c=\(\frac{1}{3}\)

29 tháng 12 2017

ta có A=\(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+\frac{1}{3bc}+\frac{1}{3ca}+\frac{2}{3}\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

ta có \(\frac{1}{a^2+b^2+c^2}+\frac{1}{3ab}+...=\frac{1}{a^2+b^2+c^2}+\frac{\frac{2}{3}}{2ab}+...\ge\frac{\left(1+3.\sqrt{\frac{2}{3}}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}=....\)

đến đây thì dễ rồi, cái kia cũng svacxơ và chú ý ab+bc+ca<=(a+b+c)^2/3

29 tháng 12 2017

mượn chỗ nhok chút!

Áp dụng bđt bu nhi a, ta có 

\(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

mà \(\sqrt{2\left(x-y\right)^2+10x-6y+8}=\sqrt{2\left(x^2-2xy+y^2+5x-3y+4\right)}\)

=\(\sqrt{2\left(x-y+2\right)^2+2\left(x+y\right)}\ge\sqrt{2\left(x+y\right)}\)

=>VT<=VP

dấu = xảy ra <=> y=x+2

với x=y-2, thay vào A, ta có 

A=\(x^4+\left(x+2\right)^2-5\left(x+x+2\right)+2020=x^4+x^2+4x+4-10x-10+2020\)

=\(x^4+x^2-6x+2014=x^4-2x^2+1+3\left(x^2-2x+1\right)+2010\)

=\(\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

dấu = xảy ra <=> x=1 và y=3

1 tháng 12 2017

Có : a^2+b^2 >= 2ab

Biểu thức trên = (a^2+b^2/4ab+ab/a^2+b^2)+3/4 (a^2+b^2/ab)

>= 2\(\sqrt{\frac{a^2+b^2}{4ab}.\frac{ab}{a^2+b^2}}\)+ 3/4 . 2 = 2.1/2+3/2 = 1+3/2 = 5/2

Dấu "=" xảy ra <=> a=b>0

Vậy GTNN của biểu thức trên = 5/2 <=> a=b > 0 

k mk nha

11 tháng 10 2018

Đặt \(\frac{a^2+b^2}{ab}=x\). Do \(a^2+b^2\ge2ab\). Chia cả hai vế cho ab được \(x\ge2\)

Đưa về dạng tìm GTNN của  \(x+\frac{1}{x}\) với \(x\ge2\) được \(A_{min}=\frac{5}{2}\)

Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow a=b\)

18 tháng 5 2020

\(P=\frac{1}{ab+2}+\frac{1}{bc+2}+\frac{1}{ca+2}\ge\frac{9}{ab+bc+ca+6}\ge\frac{9}{a^2+b^2+c^2+6}=1\)

Dấu "=" xảy ra <=> a = b = c = 1 

Vậy GTNN của P = 1 đạt tại x = y = z = 1