\(\in\)N* t/m

a\(^2\)+\(b^2...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 6 2020

\(\frac{1}{2}\left(a+b\right)^2\le a^2+b^2=ab\left(a+b\right)+ab\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\frac{1}{2}\left(a+b\right)^2\le ab\left(a+b\right)+\frac{1}{4}\left(a+b\right)^2\)

\(\Rightarrow\frac{1}{4}\left(a+b\right)^2\le ab\left(a+b\right)\Rightarrow a+b\le4ab\)

\(\Rightarrow\frac{a+b}{ab}\le4\)

\(P=\frac{\sqrt{b\left(a+b\right)}}{ab}+\frac{\sqrt{a\left(a+b\right)}}{ab}=\frac{1}{2\sqrt{2}}\left(\frac{2\sqrt{2b\left(a+b\right)}+2\sqrt{2a\left(a+b\right)}}{ab}\right)\)

\(P\le\frac{1}{2\sqrt{2}}\left(\frac{2b+a+b+2a+a+b}{ab}\right)=\sqrt{2}\left(\frac{a+b}{ab}\right)\le4\sqrt{2}\)

\(P_{max}=4\sqrt{2}\) khi \(a=b=\frac{1}{2}\)

14 tháng 6 2020

@Nguyễn Lê Phước Thịnh

20 tháng 7 2021

\(a,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\)( BĐT cô-si dạng engel)

\(\frac{4}{2+a+b}\le\frac{4}{2+2\sqrt{ab}}=\frac{2}{1+\sqrt{ab}}=VP\)(bđt tương đương)

vậy cả hai bđt dấu "=" xảy ra đồng thời

\(\hept{\begin{cases}\frac{1}{1+a}=\frac{1}{1+b}\\a=b=1\end{cases}}\)

vậy \(\frac{1}{1+a}+\frac{1}{1+b}=\frac{2}{1+\sqrt{ab}}\)khi \(a=b=1\)

\(b,\)\(\frac{1}{1+a}+\frac{1}{1+b}>\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi bđt cô -si không xảy ra dấu bằng

và bđt tương đương xảy ra dấu bằng

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}>\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}\frac{2+a+b}{1+a+b+ab}>\frac{4}{2+a+b}\\4+4\sqrt{ab}=4+2a+2b\end{cases}}\)

\(\hept{\begin{cases}4+a^2+b^2+4a+4b+2ab>4+4a+4a+4ab\\2\sqrt{ab}=a+b\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2>2ab\\a^2+b^2=0\end{cases}}\)

\(0>2ab\)

\(ab< 0\)

rồi chia ra từng TH 

ra đc \(TH1:\hept{\begin{cases}a< 0\\b>0\end{cases}}\)

\(TH2:\hept{\begin{cases}a>0\\b< 0\end{cases}}\)

\(c,\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)khi và chỉ khi 

bđt cô- si dạng engel lớn hơn hoặc bằng còn bđt tương đương thì dấu bằng xảy ra

\(\hept{\begin{cases}\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{4}{2+a+b}\\\frac{4}{2+a+b}=\frac{2}{1+\sqrt{ab}}\end{cases}}\)

\(\hept{\begin{cases}a^2+b^2\ge2ab\\a^2+b^2=0\end{cases}}\)

\(< =>0\ge2ab\)

vì đề bài cho \(a,b>0\)lên dấu bằng không xảy ra

vậy không có giá trị a,b nào thỏa mãn \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)

câu d lập luận như các câu trên cậu làm nốt nha

\(1.\)\(Cho\)\(a,b\ge0.\)   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)   \(CM:\)\(abc\le\frac{1}{8}.\)\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)\(4.\)Với ∀\(a,b,c\ge0.\)   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le...
Đọc tiếp

\(1.\)\(Cho\)\(a,b\ge0.\)

   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)
\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)
   \(CM:\)\(abc\le\frac{1}{8}.\)
\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)
   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)

\(4.\)Với ∀\(a,b,c\ge0.\)
   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le a^7+b^7+c^7.\)

\(5.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^5}{b^3c}+\frac{b^5}{c^3a}+\frac{c^5}{a^3b}\ge a+b+c.\)

\(6.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^3b}{c}+\frac{b^3c}{a}+\frac{c^3a}{b}\ge ab^2+bc^2+ca^2.\)

\(7.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=3.\)
   \(CM:\)\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}.\)
\(8.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}.\)
\(9.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=1.\)
   \(CM:\)\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}.\)

\(10.\)\(Cho\)\(a,b,c>0.\)

   \(CM:\)\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}.\)

2
13 tháng 8 2016

\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)

\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)

\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)

     \(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)

     \(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)

     \(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)

14 tháng 8 2016

\(2.\)    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
     \(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

                       \(\ge\frac{b}{1+b}+\frac{c}{1+c}\) 
                       \(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

   \(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
   \(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\)                                 \(1\ge8abc\)

\(\Leftrightarrow\)                            \(abc\ge\frac{1}{8}\left(đpcm\right).\)


 

11 tháng 7 2019

Bài 3:(dài quá,đăng từ câu):

a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)

BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:

\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)

Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và

\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)

Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)

Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.

11 tháng 7 2019

Bài ngắn làm trước:

Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:

\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)

\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)

\(=8\left(a+b+c\right)-12=8.3-12=12\)

Dấu "=" xảy ra khi ....

Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"

14 tháng 8 2016

Dự đoán các biểu thức đạt GTLN / GTNN tại các mút hoặc tại các biến bằng nhau.

Việc còn lại là nhóm hợp lý sao cho dấu bằng xảy ra giống như dự đoán,

\(A=a^2+\frac{18}{a^2}=\left(\frac{18}{a^2}+\frac{a^2}{72}\right)+\frac{71a^2}{72}\ge2\sqrt{\frac{18}{a^2}.\frac{a^2}{72}}+\frac{71.6^2}{72}=\frac{73}{2}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{18}{a^2}=\frac{a^2}{72}\\a=6\end{cases}}\Leftrightarrow a=6\)

\(B=a+a+\frac{1}{8a^2}+\frac{7}{8a^2}\ge3\sqrt[3]{a.a.\frac{1}{8a^2}}+\frac{7}{8.\left(\frac{1}{2}\right)^2}=5\)

Dấu bằng xảy ra khi \(\hept{\begin{cases}a=\frac{1}{8a^2}\\a=\frac{1}{2}\end{cases}}\Leftrightarrow a=\frac{1}{2}\)

c. \(ab\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\), làm tương tự câu a, b

d.

\(t=\frac{a+b}{\sqrt{ab}}\ge\frac{2\sqrt{ab}}{\sqrt{ab}}=2\)

\(D=t+\frac{1}{t}\text{ }\left(t\ge2\right)\), làm tương tự câu a.

26 tháng 6 2019

5/ Tưỡng dễ ăn = sos + bđt phụ ai ngờ....hic...

\(BĐT\Leftrightarrow\Sigma_{cyc}\left(\frac{a^2+b^2+c^2}{a+b+c}-\frac{a^2+b^2}{a+b}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\left(\frac{\left(a^2+b^2+c^2\right)\left(a+b\right)-\left(a^2+b^2\right)\left(a+b+c\right)}{\left(a+b+c\right)\left(a+b\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)-bc\left(b-c\right)}{\left(a+b+c\right)\left(a+b\right)}\ge0\)\(\Leftrightarrow\Sigma_{cyc}\left(\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(a+b\right)}-\frac{ca\left(c-a\right)}{\left(a+b+c\right)\left(b+c\right)}\right)\ge0\)

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)}\ge0\left(\text{đúng}\right)\)

Ai ngờ nổi khi không dùng BĐT phụ lại dễ hơn cái kia chứ -_-

26 tháng 6 2019

Ây za,nhầm dòng cuối cùng xíu ạ:

\(\Leftrightarrow\Sigma_{cyc}\frac{ca\left(c-a\right)^2}{\left(a+b+c\right)\left(a+b\right)\left(b+c\right)}\ge0\left(\text{đúng}\right)\) -_- đánh thiếu một chút lại ra nông nỗi -_-

29 tháng 8 2019

Cầ gấp, cần gấp. Cao nhân nào đi qua xin chỉ giáo dùm

17 tháng 4 2020

Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình. 
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\ \)

Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)

Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))

Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)

\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)

Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))

Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)

Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)

Từ (1), (2) và (3) => ĐPCM

Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)

\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)