\(\in\)N thỏa \(2a^2+a=3b^2+b\) Cmr a-b và 2a+2b+1 là...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2015

Nếu \(a=0\)  hoặc \(b=0\)  thì \(a=b=0\to a-b=0,2a+2b+1=1\) là các số chính phương.

Xét trường hợp  \(a,b\) là số nguyên dương.

Từ giả thiết suy ra \(2a^2+a-2b^2-b=b^2\to\left(a-b\right)\left(2a+2b+1\right)=b^2.\) 

Đặt \(d=UCLN\left(a-b,2a+2b+1\right)\to b^2\vdots d^2\to b\vdots d\to a\vdots d\to2a+2b\vdots d\to1\vdots d\to d=1.\)
Thành thử hai số \(a-b,2a+2b+1\) nguyên tố cùng nhau, có tích là số chính phương. Suy ra từng số phải là số chính phương (ĐPCM)

12 tháng 11 2016

a/ \(2a^2+a=3b^2+b\)

\(\Leftrightarrow2\left(a^2-b^2\right)+\left(a+b\right)=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)

Giả sử d là UCLN (a - b, 2a + 2b + 1) thì ta có

b2 chia hết cho d2 => b chia hết cho d

Mà 2a + 2b + 1 - 2(a - b) = 4b + 1 chia hết cho d

=> 1 chia hết cho d hay d = 1

=> (a - b) và (2a + 2b +1) nguyên tố cùng nhau

Vậy 2a + 2b + 1 là số chính phương

12 tháng 11 2016

2 SỐ NGUYÊN TỐ CÙNG NHAU KHÔNG CÓ NGHĨA LÀ 1 TRONG 2 SỐ ĐÓ LÀ SỐ CHÍNH PHƯƠNG : VIDU 5 VÀ 6 LÀ 2 SỐ NG TỐ CÙNG NHAU VÌ CÓ UCLN=1 NHƯNG KO CÓ SỐ NÀO LÀ SỐ CHÍNH PHƯƠNG CẢ...HIHIHI

AH
Akai Haruma
Giáo viên
28 tháng 10 2017

Lời giải:

Ta có:

\(2a^2+a=3b^2+b\)

\(\Leftrightarrow 2(a^2-b^2)+(a-b)=b^2\)

\(\Leftrightarrow (a-b)(2a+2b+1)=b^2\)

Giả sử $a-b, 2a+2b+1$ không nguyên tố cùng nhau. Khi đó, giữa $a-b,2a+2b+1$ sẽ tồn tại ước nguyên tố chung.

Gọi p là ước nguyên tố chung của \(a-b, 2a+2b+1\)

\(\Rightarrow \left\{\begin{matrix} a-b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\)

Vì \((a-b)(2a+2b+1)=b^2\Rightarrow b^2\vdots p\Rightarrow b\vdots p\)

\(\left\{\begin{matrix} b\vdots p\\ a-b\vdots p\end{matrix}\right.\rightarrow a\vdots p\)

\(\left\{\begin{matrix} a\vdots p\\ b\vdots p\\ 2a+2b+1\vdots p\end{matrix}\right.\Rightarrow 1\vdots p\) (vô lý)

Vậy $a-b,2a+2b+1$ nguyên tố cùng nhau. Mà tích của 2 số đó là một số chính phương nên bản thân mỗi số cũng là số chính phương.

Do đó \(2a+2b+1\) là số chính phương.

17 tháng 9 2017

xét (2a+3b)(2b+3a)=\(4ab+6b^2+9ab+6a^2=6\left(a^2+b^2\right)+13ab\)

mặ khác ta có \(13ab⋮13\)\(a^2+b^2⋮13\left(gt\right)\Rightarrow6\left(a^2+b^2\right)⋮13\)\(\Rightarrow\left(2a+3b\right)\left(2b+3a\right)⋮13\)

\(\Rightarrow\)2a+3b hoặc 2b+3a chia hết cho 13

23 tháng 11 2018

Ta có \(2a^2+a=3b^2+b\Leftrightarrow2a^2+a-3b^2-b=0\Leftrightarrow2a^2+2ab+a-2ab-2b^2-b=b^2\Leftrightarrow a\left(2a+2b+1\right)-b\left(2a+2b+1\right)=b^2\Leftrightarrow\left(2a+2b+1\right)\left(a-b\right)=b^2\)

Gọi (a-b,2a+2b+1)=d\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)⋮d\\\left(2a+2b+1\right)⋮d\end{matrix}\right.\)\(\Rightarrow\left(a-b\right)\left(2a+ab+1\right)⋮d^2\)\(\Rightarrow b^2⋮d^2\Rightarrow b⋮d\)

Mà (a-b)\(⋮d\)

Suy ra a\(⋮d\Rightarrow2a+2b⋮d\)

Mà (2a+2b+1)\(⋮d\)

Suy ra \(1⋮d\)\(\Rightarrow d=1\)

Vậy (a-b,2a+2b+1)=1\(\Rightarrow\dfrac{a-b}{2a+2b+1}\) là phân số tối giản

1 tháng 6 2018

Toán Lớp 9 hả bạn

1 tháng 6 2018

Đúng rồi bạn

NV
11 tháng 8 2020

Từ kết quả bài toán suy ngược ra thôi

Muốn giải thích thì cứ phá 2 vế ra rồi so sánh là tìm ra cách tách biểu thức

NV
11 tháng 8 2020

Câu 4 mình ko biết giải quyết kiểu lớp 9 (mặc dù chắc chắn là biểu thức sẽ được biến đổi như vầy)

Đó là kiểu trình bày của lớp 11 hoặc 12 để bạn tham khảo thôi