Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a p dg côsi \(a\sqrt{b-1}=a.1.\sqrt{b-1}\le a.\dfrac{1+b-1}{2}=\dfrac{ab}{2}\)
ttuong tu \(b\sqrt{a-1}\le\dfrac{ab}{2}\)
nên vt\(\le ab\)
dau = xảy ra a=b=2
1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)
Thì ta có:
\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)
\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)
2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)
\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)
\(=\frac{3}{4}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky kết hợp Cauchy ngược dấu ta có:
\((a\sqrt{b-1}+b\sqrt{a-1})^2=(\sqrt{a}.\sqrt{ab-a}+\sqrt{b}.\sqrt{ba-b})^2\leq (a+b)(ab-a+ba-b)\)
\(\leq \left(\frac{a+b+ab-a+ba+b}{2}\right)^2=(ab)^2\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\leq ab\)
Ta có đpcm
Dấu "=" xảy ra khi \(a=b=2\)
Ta có:
\(\sqrt{b-1}=\sqrt{\left(b-1\right).1}\le\frac{b-1+1}{2}=\frac{b}{2}\)
\(\Rightarrow\) \(a\sqrt{b-1}=\frac{ab}{2}\) \(\left(1\right)\)
Tương tự, ta cũng có: \(b\sqrt{a-1}=\frac{ab}{2}\) \(\left(2\right)\)
Cộng hai bđt trên, suy ra đpcm
Bài 1: (không dùng Cô-si) Bình phương hai vế, ta được:
\(c\left(a-c\right)+c\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(ac-2c^2+bc+2c\sqrt{\left(a-c\right)\left(b-c\right)}\le ab\)
\(0\le\left(ab-ac-bc+c^2\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(a-c\right)\left(b-c\right)+2c\sqrt{\left(a-c\right)\left(b-c\right)}+c^2\)
\(0\le\left(\sqrt{\left(a-c\right)\left(b-c\right)}-c\right)^2\)(đúng)
Vậy BĐT đúng. Xảy ra khi \(a=b=2c\)
Áp dụng bđt AM - GM ta có :
\(\sqrt{b-1}\le\frac{b-1+1}{2}=\frac{b}{2}\Rightarrow a\sqrt{b-1}\le\frac{ab}{2}\)
\(\sqrt{a-1}\le\frac{a-1+1}{2}=\frac{a}{2}\Rightarrow b\sqrt{a-1}\le\frac{ba}{2}\)
\(\Rightarrow a\sqrt{b-1}+b\sqrt{a-1}\le\frac{ab}{2}+\frac{ab}{2}=ab\)(đpcm)
b2 dễ tự lm
b2 x2 là x mũ 2. y2 là y mũ 2 .
yx−y=x2+2
yx−y−x2−2=0
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
x=−2−y+√y2−4y−8,−2−y−√y2−4y−8
k sau giúp tiếp
\(VT\le\frac{a\left(b-1+1\right)}{2}+\frac{b\left(a-1+1\right)}{2}=\frac{ab}{2}+\frac{ab}{2}=ab\) ( Cosi ngược dấu )
:))
a√(b-1) = a√1(b-1) ≤ b/2*a=ab/2
b√(a-1) = b√1(a-1) ≤ a/2*b=ab/2
Cộng vế theo vế ta được:
a√(b-1) + b√(a-1) ≤ ab/2 +ab/2 = 2ab/2 = ab
a√(b-1) = a√1(b-1) ≤ b/2*a=ab/2
b√(a-1) = b√1(a-1) ≤ a/2*b=ab/2
Cộng vế theo vế ta được:
a√(b-1) + b√(a-1) ≤ ab/2 +ab/2 = 2ab/2 = ab