Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 là tìm giá trị lớn nhất ạ!
ta có A>=0. xét 100=xy+z+xz\(\ge3\sqrt[3]{xy\cdot yz\cdot zx}\)
\(\Rightarrow100\ge3\sqrt[3]{A^2}\Rightarrow\left(\frac{100}{3}\right)^3\ge A^2\Rightarrow A< \frac{100}{3}\sqrt{\frac{100}{3}}\)
dấu đẳng thức xảy ra khi xy=yz=zx
Bài 1 nhìn vô đoán ngay a=3,b=2 -> S=13!
AM-GM:\(\frac{5}{9}\left(a^2+9\right)\ge\frac{10}{3}a;\text{ }\frac{4}{9}\left(a^2+\frac{9}{4}b^2\right)\ge\frac{4}{3}ab\)
\(\rightarrow a^2+b^2+5\ge\frac{10}{3}a+\frac{4}{3}ab\ge\frac{10}{3}\cdot3+\frac{4}{3}\cdot6=18\)
\(\Rightarrow S=a^2+b^2\ge13\) (đúng)
Đẳng thức xảy ra khi a=3, b=2.
Do \(a,b,c\in\left[-1;2\right]\Rightarrow\left(a+1\right)\left(a-2\right)\le0\Rightarrow a^2\le a+2\)
Tương tự:
\(b^2\le b+2;c^2\le c+2\Rightarrow a^2+b^2+c^2\le a+b+c+6\)
\(\Rightarrow a+b+c\ge0\) vì \(a^2+b^2+c^2=6\)
Trình bày khác Cool Kid xíu!
\(a+b+c=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)+\Sigma_{cyc}\left(a^2-2\right)\)
\(=\Sigma_{cyc}\left(a+1\right)\left(2-a\right)\ge0\) vì \(a,b,c\in\left[-1;2\right]\)
Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(-1;-1;2\right)\) và các hoán vị.
1.Ta có: \(c+ab=\left(a+b+c\right)c+ab\)
\(=ac+bc+c^2+ab\)
\(=a\left(b+c\right)+c\left(b+c\right)\)
\(=\left(b+c\right)\left(a+b\right)\)
CMTT \(a+bc=\left(c+a\right)\left(b+c\right)\)
\(b+ca=\left(b+c\right)\left(a+b\right)\)
Từ đó \(P=\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(c+a\right)\left(a+b\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(a+b\right)}}\)
Ta có: \(\sqrt{\frac{ab}{\left(a+b\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}\right)\)( theo BĐT AM-GM)
CMTT\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{b}{a+b}+\frac{c}{b+c}+\frac{a}{a+b}\right)\)
\(\Rightarrow P\le\frac{1}{2}.3\)
\(\Rightarrow P\le\frac{3}{2}\)
Dấu"="xảy ra \(\Leftrightarrow a=b=c\)
Vậy /...
\(\frac{a+1}{b^2+1}=a+1-\frac{ab^2-b^2}{b^2+1}=a+1-\frac{b^2\left(a+1\right)}{b^2+1}\ge a+1-\frac{b^2\left(a+1\right)}{2b}\)
\(=a+1-\frac{b\left(a+1\right)}{2}=a+1-\frac{ab+b}{2}\)
Tương tự rồi cộng lại:
\(RHS\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)
\(\ge a+b+c+3-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)
Dấu "=" xảy ra tại \(a=b=c=1\)
Giả sử \(c=min\left\{a,b,c\right\}\Rightarrow1=a^2+b^2+c^2+2abc\ge2c^3+3c^2\Rightarrow c\le\frac{1}{2}\)
Chọn t > 0 thỏa mãn: \(\hept{\begin{cases}2t^2+c^2+2t^2c=1\left(1\right)\\2t^2+c^2+2t^2c=a^2+b^2+c^2+2abc\left(2\right)\end{cases}}\) (từ (1) ta mới có (2):v)
(2) \(\Rightarrow2c\left(t^2-ab\right)=a^2+b^2-2t^2\).
Ta thấy rằng, nếu\(t^2< ab\) thì:\(2t^2>a^2+b^2\ge2ab\Rightarrow t^2>ab\) (mâu thuẫn).
Vì vậy: \(t^2\ge ab\Rightarrow a^2+b^2\ge2t^2\). Bây giờ đặt P = f(a;b;c)
Xét: \(f\left(a;b;c\right)-f\left(t;t;c\right)=\left(c-1\right)\left(t^2-ab\right)+c\left(a+b-2t\right)\)
\(=\left(c-1\right)\left(t^2-ab\right)+\frac{c\left(a^2+b^2-2t^2\right)+2c\left(ab-t^2\right)}{a+b+2t}\)\(=\left(c-1\right)\left(t^2-ab\right)+\frac{2c^2\left(t^2-ab\right)-2c\left(t^2-ab\right)}{a+b+2t}\)
\(=\left(c-1\right)\left(t^2-ab\right)\left(1+\frac{2c}{a+b+2t}\right)\le0\)
Do đó \(f\left(a;b;c\right)\le f\left(t;t;c\right)=f\left(t;t;1-2t^2\right)\).
\(=\frac{1}{8}\left(2c-1\right)^2\left[\left(2c-1\right)^2-6\right]+\frac{5}{8}\le\frac{5}{8}\)
Cách rất dài và hại não, tối rồi em lười check lại quá:((
*Sửa đề: tìm GTNN
\(A=\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ca\sqrt{b-4}}{abc}\)
\(=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng BĐT AM-GM ta có:
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\ge\frac{\frac{2+c-2}{2}}{\sqrt{2}c}=\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)
TƯơng tự cho 2 BĐT còn lại ta cũng có:
\(\frac{\sqrt{a-3}}{a}\ge\frac{1}{2\sqrt{3}};\frac{\sqrt{b-4}}{b}\ge\frac{1}{2\sqrt{4}}\)
Suy ra \(A\ge\frac{1}{2}\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{4}}\right)\)
Ta có : \(\frac{ab\sqrt{c-2}+bc\sqrt{a-3}+ac\sqrt{b-4}}{abc}=\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\)
Áp dụng bất đẳng thức Cauchy, ta có :
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{2+c-2}{2\sqrt{2}c}=\frac{1}{2\sqrt{2}}\)
\(\frac{\sqrt{a-3}}{a}=\frac{\sqrt{3\left(a-3\right)}}{\sqrt{3}a}\le\frac{3+a-3}{2\sqrt{3}a}=\frac{1}{2\sqrt{3}}\)
\(\frac{\sqrt{b-4}}{b}=\frac{\sqrt{4\left(b-4\right)}}{2b}\le\frac{4+b-4}{4b}=\frac{1}{4}\)
\(\Rightarrow\frac{\sqrt{c-2}}{c}+\frac{\sqrt{a-3}}{a}+\frac{\sqrt{b-4}}{b}\le\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}c-2=2\\b-4=4\\a-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}c=4\\b=8\\a=6\end{cases}}\)
Vậy giá trị lớn nhất của biểu thức là \(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+\frac{1}{4}\Leftrightarrow\hept{\begin{cases}a=6\\b=8\\c=4\end{cases}}\)
phá ra nha
sau đó bạn lm theo tek này
\(\frac{\sqrt{c-2}}{c}=\frac{\sqrt{2\left(c-2\right)}}{\sqrt{2}c}\le\frac{\frac{c}{2}}{\sqrt{2}c}=\frac{1}{\sqrt{2}}\)
mấy cái kia tt nha
Nguyễn Thu Huyền Chỗ nào có \(\le\) thì chuyển thành \(\ge\) nhé. Thế là ok. Tại mk bấm nhầm
\(\text{Ta có }:a^2+ab+b^2=\left(a^2+2ab+b^2\right)-ab\\ =\left(a+b\right)^2-ab\overset{BĐT\text{ }Cô-si}{\le}\left(a+b\right)^2-\frac{\left(a+b\right)^2}{4}=\frac{3}{4}\left(a+b\right)^2\\ \Rightarrow\sqrt{a^2+ab+b^2}\le\frac{\sqrt{3}}{2}\left(a+b\right)\)
Tương tự : \(\sqrt{b^2+bc+c^2}\le\frac{\sqrt{3}}{2}\left(b+c\right)\)
\(\sqrt{a^2+ac+c^2}\le\frac{\sqrt{3}}{2}\left(a+c\right)\\ \Rightarrow\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{a^2+ac+c^2}\\ \le\frac{\sqrt{3}}{2}\left(a+b\right)+\frac{\sqrt{3}}{2}\left(b+c\right)+\frac{\sqrt{3}}{2}\left(a+c\right)\\= \frac{\sqrt{3}}{2}\left(a+b+b+c+a+c\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)
Dấu "=" xảy ra khi: \(\left\{{}\begin{matrix}a=b\\b=c\\a=c\\a+b+c=3\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=1\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(P=\frac{ab\frac{c}{2}\frac{c}{2}}{\frac{c}{4}}\le\frac{4\left(a+b+c\right)^4}{3.256}=\frac{27}{4}\)
Áp dụng BĐT cô-si cho 2 số không âm ta có:
\(\frac{a+b+c}{3}\ge\sqrt[3]{abc}\)
\(\Leftrightarrow2\ge\sqrt[3]{abc}\)
\(\Leftrightarrow abc\le8\)
chắc GTLN là 8 heee ko rành