Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đề sai (ko nói đến chuyện nhầm lẫn ở hạng tử thứ 2 lẽ ra là bc), bạn cho \(a=b=c=d=0,1\) là thấy vế trái lớn hơn vế phải
b/ \(\frac{1}{2}xy.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(x+y\right)^2}{4}.\frac{\left(2xy+x^2+y^2\right)^2}{4}=\frac{\left(x+y\right)^6}{32}=\frac{64}{32}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
c/ Bình phương 2 vế:
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+2\left(a^2+b^2+c^2\right)\ge3\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge a^2+b^2+c^2\)
Ta có: \(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}\ge2b^2\) ; \(\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\ge2c^2\); \(\frac{a^2b^2}{c^2}+\frac{a^2c^2}{b^2}\ge2a^2\)
Cộng vế với vế:
\(2\left(\frac{a^2b^2}{c^2}+\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}\right)\ge2\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow...\)
Dấu "=" xảy ra khi \(a=b=c\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
\(x,y,z\ge1\)nên ta có bổ đề: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\ge\frac{2}{ab+1}\)
ÁP dụng: \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}+\frac{1}{1+\sqrt[3]{xyz}}\ge\frac{2}{1+\sqrt{xy}}+\frac{2}{1+\sqrt{\sqrt[3]{xyz^4}}}\)
\(\ge\frac{4}{1+\sqrt[4]{\sqrt[3]{x^4y^4z^4}}}=\frac{4}{1+\sqrt[3]{xyz}}\)
\(\Rightarrow\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge\frac{3}{1+\sqrt[3]{xyz}}\)
Dấu = xảy ra \(x=y=z\)hoặc x=y,xz=1 và các hoán vị
trc giờ mấy bài này tui toàn quy đồng thôi, may có cách này =))
\(b^2+c^2\le a^2\Leftrightarrow\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2\le1\)
Đặt \(\left\{{}\begin{matrix}\left(\frac{b}{a}\right)^2=x\\\left(\frac{c}{a}\right)^2=y\end{matrix}\right.\) \(\Rightarrow x+y\le1\)
\(P=\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{a}{b}\right)^2+\left(\frac{a}{c}\right)^2=x+y+\frac{1}{x}+\frac{1}{y}\)
\(P=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{3}{4}.\frac{4}{\left(x+y\right)}\)
\(P\ge2+\frac{3}{\left(x+y\right)}\ge2+\frac{3}{1}=5\) (đpcm)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\) hay \(\left(\frac{b}{a}\right)^2=\left(\frac{c}{a}\right)^2=\frac{1}{2}\Rightarrow b=c=\frac{a}{\sqrt{2}}\)
Use Be-loli 's ineq:
\(\left(\dfrac{2a}{a+b}\right)^n=\left(1+\dfrac{a-b}{a+b}\right)^n\ge1+\dfrac{n\left(a-b\right)}{a+b}\)
\(\left(\dfrac{2b}{a+b}\right)^n=\left(1-\dfrac{a-b}{a+b}\right)^n\ge1-\dfrac{n\left(a-b\right)}{a+b}\)
Cộng theo vế 2 BĐT trên ta có:
\(\left(\dfrac{2a}{a+b}\right)^n+\left(\dfrac{2b}{a+b}\right)^n\ge2\Leftrightarrow\left(\dfrac{a+b}{2}\right)^n\le\dfrac{a^n+b^n}{2}\)