\(a,b\ge0\), \(a^2+b^2=4\). Tìm max ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2019

Từ \(a^2+b^2=4\Rightarrow\left(a+b\right)^2-2ab=4\)

                              \(\Rightarrow2ab=\left(a+b\right)^2-4\)

Ta có : \(2M=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{a+b+2}=a+b-2\)

Lại có : \(\left(a+b\right)^2\le2\left(a^2+b^2\right)=8\)

\(\Rightarrow a+b\le2\sqrt{2}\)

\(\Rightarrow2M\le2\sqrt{2}-2\)

\(\Rightarrow M\le\sqrt{2}-1\)

Dấu ''=" <=> \(a=b=\sqrt{2}\)

4 tháng 12 2017

cau b . ta co 

a4+b4\(\ge\frac{\left(a^2+b^2\right)^2}{2}\)\(\ge\)\(\frac{\frac{1}{16}}{2}\)=1/32

câu a đề phải là 12ab 

Dùng BĐT cô si 

\(ab\ge2\sqrt{ab}\)

\(9+ab\ge2.3\sqrt{ab}\)

\(\Rightarrow\left(a+b\right)\left(9+ab\right)\ge12ab\)

30 tháng 7 2019

a) \(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{x^2-1}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{\left(2x-3\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x^2-x-3}{\left(x-1\right)\left(x+1\right)}\)

\(B=\frac{\left(x^2-x\right)+\left(2x^2+2x-3x-3\right)-\left(2x^2-x-3\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x^2-x}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(B=\frac{x}{x+1}\)

30 tháng 7 2019

MÌnh nghĩ đề câu b là với x>-4 mới đúng chứ

\(B=\frac{x}{x+1}+\frac{2x-3}{x-1}-\frac{2x^2-x-3}{\left(x^2-1\right)}.\)

\(=\frac{x\left(x-1\right)+\left(2x-3\right)\left(x+1\right)-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x+2x^2-x-3-2x^2+x+3}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\frac{x}{x+1}\)

\(\Rightarrow A.B=\frac{x}{\left(x+1\right)}.\frac{x\left(x+1\right)}{\left(x-2\right)}=\frac{x^2}{\left(x-2\right)}=\frac{x^2-4+4}{\left(x-2\right)}\)

\(=\frac{\left(x-2\right)\left(x+2\right)+4}{\left(x-2\right)}=x+2+\frac{4}{x-2}=x-2+\frac{4}{x-2}+4\)

Áp dụng BĐT Cô - Si cho 2 số dương \(x-2;\frac{4}{x-2}\)ta có :

\(x-2+\frac{4}{x-2}\ge2\sqrt{\frac{\left(x-2\right).4}{x-2}}=2\sqrt{4}=4\)

\(\Rightarrow x-2+\frac{4}{x-2}\ge4\Rightarrow x-2+\frac{4}{x-2}+4\ge8\)

Hay \(S_{min}=4\Leftrightarrow x-2=\frac{4}{x-2}\)

\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-2\right)}=\frac{4}{x-2}\Rightarrow x^2+4x+4=4\)

\(\Rightarrow x^2+4x=0\Rightarrow x\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=-4\left(ktm\right)\end{cases}}\)\(\Rightarrow...\)

13 tháng 6 2017

Áp dụng BĐT Bernoulli ta có:

\(\left(\frac{2x}{x+y}\right)^n=\left(1+\frac{x-y}{x+y}\right)^n\ge1+\frac{n\left(x-y\right)}{x+y}\)

\(\left(\frac{2y}{x+y}\right)^n=\left(1-\frac{x-y}{x+y}\right)^n\ge1-\frac{n\left(x-y\right)}{x+y}\)

Cộng theo vế 2 BĐT trên ta có: 

\(\left(\frac{2x}{x+y}\right)^n+\left(\frac{2y}{x+y}\right)^n\ge2\) Hay \(\frac{a^n+b^n}{2}\ge\left(\frac{a+b}{2}\right)^n\)

16 tháng 10 2020

Ta có: \(2a^2+\frac{b^2}{4}+\frac{1}{a^2}=4\Rightarrow8a^4+a^2b^2+4=16a^2\Rightarrow a^2b^2=-8a^4+16a^2-4=-8\left(a^4-2a^2+1\right)+4=-8\left(a^2-1\right)^2+4\le4\)\(\Rightarrow\left|ab\right|\le2\Rightarrow-2\le ab\le2\)

Vậy MaxS = 2023 khi ab = 2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;-2\right);\left(1;2\right)\right\}\)

MinS = 2019 khi ab = -2 và a2 = 1 do đó \(\left(a,b\right)\in\left\{\left(-1;2\right);\left(1;-2\right)\right\}\)

2 tháng 7 2015

\(4=a^2+b^2\ge2ab\Rightarrow ab\le2\)

\(\frac{ab}{a+b+2}=\frac{1}{\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}}>0\)

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{2}{ab}\ge\frac{2}{\sqrt{ab}}+\frac{2}{ab}\ge\frac{2}{\sqrt{2}}+\frac{2}{2}=1+\sqrt{2}\)

\(\Rightarrow\frac{ab}{a+b+2}\le\frac{1}{1+\sqrt{2}}=-1+\sqrt{2}\)

Vậy GTLN của A là \(-1+\sqrt{2}\text{ khi }x=y=\sqrt{2}\)

2 tháng 7 2015

\(a^2+b^2=4\Leftrightarrow\left(a+b\right)^2-2ab=4\Leftrightarrow\left(a+b\right)^2-4=2ab\)

\(2A=\frac{2ab}{a+b+2}=\frac{\left(a+b\right)^2-4}{a+b+2}=\frac{\left(a+b+2\right)\left(a+b-2\right)}{a+b+2}=a+b-2\)

áp dụng cosi ta có: \(a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow\left(a+b\right)^2\le8\Leftrightarrow a+b\le\sqrt{8}=2\sqrt{2}\Rightarrow a+b-2\le2\sqrt{2}-2\)

=> Max A= 2căn 2-2 <=> a=b= căn 2

17 tháng 8 2019

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\Leftrightarrow a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\Rightarrow2\ge a+b\)

\(S=\frac{a}{a+1}+\frac{b}{b+1}=\frac{a+1}{a+1}+\frac{b+1}{b+1}-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

AD BĐT: \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x,y\in Z^+\right)\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+b+2}\ge\frac{4}{4}=1\) ( vì \(2\ge a+b\) )

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

Vậy \(S_{max}=1\Leftrightarrow a=b=1\)

20 tháng 7 2017

1.a>0.√a

2.c/mb/z+x/y=a/b6

=x/y=y/x

4.xxy/2 2

5.a/b+ab=ab2