Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a+b+c = 0 ; x+y+z = 0 và \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
CMR : \(ax^2+by^2+cz^2=0\)
Có:
\(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x=y+z\\-y=x+z\\-z=x+y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=\left(y+z\right)^2\\y^2=\left(x+z\right)^2\\z^2=\left(x+y\right)^2\end{matrix}\right.\)
\(\Rightarrow ax^2+by^2+cz^2\)
\(=a\left(y+z\right)^2+b\left(x+z\right)^2+c\left(x+y\right)^2\)
\(=x^2\left(b+c\right)+y^2\left(a+c\right)+z^2\left(a+b\right)+2\left(ayz+bxz+cxy\right)\)
Mà \(a+b+c=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=-a\\a+c=-b\\a+b=-c\end{matrix}\right.\)
Đồng thời có: \(\dfrac{a}{x}+\dfrac{b}{y}+\dfrac{c}{z}=0\)
\(\Leftrightarrow\dfrac{ayz+bxz+cxy}{xyz}=0\)
\(\Leftrightarrow ayz+bxz+cxy=0\)
Từ đây ta có:)
\(ax^2+by^2+cz^2=-ax^2-by^2-cz^2\)
\(\Rightarrow2\left(ax^2+by^2+cz^2\right)=0\)
\(\Rightarrow ax^2+by^2+cz^2=0\left(đpcm\right)\)
Giả sử điều cần c/m là đúng . Khi đó , ta có :
\(\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\)
\(\Leftrightarrow\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow x^2a^2+y^2a^2+z^2a^2+x^2b^2+y^2b^2+z^2b^2+x^2c^2+y^2c^2+z^2c^2\)
\(=x^2a^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2=2axby+2bycz+2axcz\)
\(\Leftrightarrow y^2a^2+z^2a^2+x^2b^2+z^2b^2+x^2c^2+y^2c^2-2axby-2bycz-2axcz=0\) \(\Leftrightarrow\left(y^2a^2-2axby+b^2x^2\right)+\left(b^2z^2-2bycz+c^2y^2\right)+\left(x^2c^2-2axcz+a^2z^2\right)=0\)
\(\Leftrightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2=0\left(1\right)\)
Do \(\left\{{}\begin{matrix}\left(ay-bx\right)^2\ge0\\\left(bz-cy\right)^2\ge0\\\left(cx-az\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(ay-bx\right)^2+\left(bz-cy\right)^2+\left(cx-az\right)^2\ge0\left(2\right)\)
Từ ( 1 ) ; ( 2 ) \(\Rightarrow\left\{{}\begin{matrix}ay-bx=0\\bz-cy=0\\cx-az=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}ay=bx\\bz=cy\\cx=az\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{x}=\dfrac{b}{y}\\\dfrac{b}{y}=\dfrac{c}{z}\\\dfrac{c}{z}=\dfrac{a}{x}\end{matrix}\right.\) \(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Điều này đúng với GT đề bài cho
\(\Rightarrow\) Điều cần c/m là đúng
\(\Rightarrow\dfrac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\dfrac{1}{a^2+b^2+c^2}\left(đpcm\right)\)
hơi dài bạn ạ bđt trên đúng theo bunhia vì dấu "=" đúng với điều kiện rồi
Đặt \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=\frac{1}{k}\Rightarrow x=ak;y=bk;y=ck\)
\(\Rightarrow\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{a^2k^2+b^2k^2+c^2k^2}{\left(a^2k+b^2k+c^2k\right)^2}=\frac{k^2\left(a^2+b^2+c^2\right)}{k^2\left(a^2+b^2+c^2\right)^2}=\frac{1}{a^2+b^2+c^2}\)
Mạo phép sửa đề!CMR: \(\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}=\frac{3}{a^2+b^2+c^2}\)
Ta có: \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
\(\Rightarrow\frac{x^2}{ax}=\frac{y^2}{by}=\frac{z^2}{cz}=\frac{x^2+y^2+z^2}{ax+by+cz}\) (t/c dãy tỉ số bằng nhau)
\(\Rightarrow\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\frac{x^2+y^2+z^2}{\left(ax+by+cz\right)^2}\) (1)
Lại có: \(\frac{x^2}{\left(ax\right)^2}=\frac{y^2}{\left(by\right)^2}=\frac{z^2}{\left(cz\right)^2}=\) \(\frac{x^2}{a^2x^2}=\frac{y^2}{b^2y^2}=\frac{z^2}{c^2z^2}=\frac{1}{a^2}=\frac{1}{b^2}=\frac{1}{c^2}=\frac{3}{a^2+b^2+c^2}\)
Áp dụng BĐT Bunhiacopxki , ta có :
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\text{≥}\left(ax+by+cz\right)^2\)
\("="\text{⇔}\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
⇒ \(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)\text{=}\left(ax+by+cz\right)^2\)
P/s : Bạn cũng có thể biến đổi VT cũng ra nhé .
2) ta có: \(VT=\left(a^2+b^2\right)\left(x^2+y^2\right)\) và \(VP=\left(ax+by\right)^2\)
tính hiệu của cả VT và VP
suy ra: \(\left(ay+bx\right)^2=0\Rightarrow ay=bx\)
vì \(x,y\ne0\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\left(đpcm\right)\)
3)(a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2 (1)
biến đổi đẳng thức (1) thành (ay+bx)2 + (bz-cy)2 +(az-cx)2 =0
\(\Rightarrow\) Đpcm
Lời giải:
Ta có:
\(\left\{\begin{matrix} x=by+cz\\ y=ax+cz\\ z=ax+by\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x-y=by-ax\\ z=ax+by\end{matrix}\right.\)
\(\Rightarrow x-y+z=2by\Rightarrow b=\frac{x+z-y}{2y}\)
Hoàn toàn tương tự ta nhận được:
\(a=\frac{y+z-x}{2x};c=\frac{x+y-z}{2z}\)
Suy ra:
\(\left\{\begin{matrix} a+1=\frac{x+y+z}{2x}\\ b+1=\frac{x+y+z}{2y}\\ c+1=\frac{x+y+z}{2z}\end{matrix}\right.\)
\(\Rightarrow \frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\) (ĐPCM)
1) Đặt \(B=x^2+y^2+z^2\)
\(C=\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)
Ta có: \(x+y+z=0\Rightarrow\left(x+y+z\right)^2=0\)
\(\Leftrightarrow-2\left(xy+yz+xz\right)=x^2+y^2+z^2\)
Suy ra: \(C=2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)=2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2=3\left(x^2+y^2+z^2\right)\)
\(\Rightarrow A=\dfrac{B}{C}=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
2) \(x^2-2y^2=xy\Leftrightarrow x^2-xy-2y^2=0\)
\(\Leftrightarrow x^2+xy-2xy-2y^2=0\)
\(\Leftrightarrow x\left(x+y\right)-2y\left(x+y\right)=0\)
\(\Leftrightarrow\left(x-2y\right)\left(x+y\right)=0\)
Do \(x+y\ne0\) nên \(x-2y=0\Leftrightarrow x=2y\)
Do đó: \(A=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)
Lời giải:
\(\frac{(ax+by+cz)^2}{x^2+y^2+z^2}=a^2+b^2+c^2\)
\(\Rightarrow (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)\)
\(\Leftrightarrow a^2x^2+b^2y^2+c^2z^2+2axby+2bycz+2axcz=a^2x^2+a^2y^2+a^2z^2+b^2x^2+b^2y^2+b^2z^2+c^2x^2+c^2y^2+c^2z^2\)
\(\Leftrightarrow 2axby+2bycz+2axcz=a^2y^2+a^2z^2+b^2x^2+b^2z^2+c^2x^2+c^2y^2\)
\(\Leftrightarrow (a^2y^2+b^2x^2-2axby)+(a^2z^2+c^2x^2-2axcz)+(b^2z^2+c^2y^2-2bycz)=0\)
\(\Leftrightarrow (ay-bx)^2+(az-cx)^2+(bz-cy)^2=0\)
Vì bản thân mỗi số hạng đều không âm nên để tổng của chúng bằng $0$ thì:
\((ay-bx)^2=(az-cx)^2=(bz-cy)^2=0\Rightarrow ay=bx; az=cx; bz=cy\)
\(\Rightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có đpcm.
Đề thiếu?
thiếu = 0