Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x2}{y+z}+x=\frac{x^2+x\left(y+z\right)}{y+z}=\frac{x\left(x+y+z\right)}{y+z}\)
Tương tự ta có:
\(\frac{y^2}{x+z}+y=\frac{y\left(x+y+z\right)}{x+z};\frac{z^2}{x+y}+z=\frac{z\left(x+y+z\right)}{x+y}\)
Cộng vế theo vế ta có:
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+x+y+z=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}+2020=2020\)
E ms bt bài này thôi ạ
gt\(\Leftrightarrow\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}+\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
Vì \(x^2,y^2,z^2\ge0\) và các phép trừ trong ngoặc lớn hơn 0
nên x=y=z=0
=> M=0+0+0=0
Mình biết nhưng bài giải hơi tóm tắt bạn có cần không :)
b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz)
\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)
a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)
\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky)
\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)
\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)
Dấu "=" xảy ra <=> x = y = z = 2/3
1.
Áp dụng bất đẳng thức AM - GM cho 2 số dương ta có:
\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)
tương tự, ta có:
\(\frac{bc}{a}+\frac{ac}{b}\ge2\sqrt{\frac{bc}{a}.\frac{ac}{b}}=2c\)
\(\frac{ab}{c}+\frac{ac}{b}\ge2\sqrt{\frac{ab}{c}.\frac{ac}{b}}=2a\)
Cộng theo vế của 3 BĐT trên, ta được:
\(2\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)
\(\Rightarrow\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\ge a+b+c\) (ĐPCM)
ý b nghĩ đã ~.~
2.
P = \(\frac{x^2}{2-x}+\frac{y^2}{2-y}+\frac{z^2}{2-z}\)
Sau đó áp dụng bất đẳng thức AM - GM như trên nhé bạn!