Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2}{ab}+\frac{b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge2\left(đpcm\right)\)
\(a^5-a=a\left(a^4-1\right)\)
\(=a\left(a^2+1\right)\left(a^2-1\right)\)
\(=a\left(a^2+1\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4+5\right)\left(a-1\right)\left(a+1\right)\)
\(=a\left(a^2-4\right)\left(a-1\right)\left(a+1\right)+5a\left(a+1\right)\left(a-1\right)\)
\(=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\left(a+2\right)+5a\left(a+1\right)\left(a-1\right)\)
Tích 5 số nguyên liên tiếp chia hết cho 5 nên \(a^5-a⋮5\)
Câu Hỏi Tương Tự của Trương Diệu Ngọc nha !
MERRY CHRISMAS !Đoàn Văn Nam
áp dụng t/c DTSBN,ta có:
\(\frac{ab+ac}{2}=\frac{bc+ab}{3}=\frac{ca+bc}{4}=\frac{ab+ac-bc-ab+ca+bc}{2-3+4}=\frac{2ac}{3}\)
\(\frac{ab+ac}{2}=\frac{2ac}{3}\Leftrightarrow3ab+3ac=4ac\Leftrightarrow3ab=ac\Leftrightarrow3b=c\Leftrightarrow\frac{b}{1}=\frac{c}{3}\Rightarrow\frac{b}{5}=\frac{c}{15}\)(vì a khác 0)(!)
\(\frac{ca+cb}{4}=\frac{2ac}{3}\Leftrightarrow3ac+3cb=8ac\Leftrightarrow3bc=5ac\Rightarrow3b=5a\Rightarrow\frac{a}{3}=\frac{b}{5}\)(vì c khác 0)(@)
từ (!) và (@) => đpcm
--> \(a^2b^2c^2\)= \(\frac{2}{5}\).\(\frac{3}{7}\).\(\frac{10}{21}\)=\(\frac{4}{49}\)--> \(abc\)=\(\sqrt{\frac{4}{49}}=\frac{2}{7}\)
--> \(c=\frac{2}{7}:\frac{2}{5}=\frac{5}{7}\)-->\(a=\frac{2}{3}\)-->\(b=\frac{3}{5}\)
Ta có:
0 ≤ a ≤ b ≤ c ≤ 1; và a, b, c ≥ 0
=> a - 1 ≤ 0 ; b - 1 ≤ 0
=> ( a - 1 )( b - 1 ) ≥ 0
=> ab - a - b + 1 ≥ 0
=> ab + 1 ≥ a + b
=>\(\frac{1}{ab+1}\le\frac{1}{a+b}\) => \(\frac{c}{ab+1}\le\frac{c}{a+b}\) (1)
Chứng Minh Tương Tự: => \(\frac{a}{bc+1}\le\frac{a}{a+b}\) (2)
và \(\frac{b}{ac+1}\le\frac{b}{a+c}\) (3)
Từ (1); (2) và (3) =>
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)\(\le\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}\)
=> \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{2\left(a+b+c\right)}{a+b+c}=2\)( ĐPCM )