Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Do M là trung điểm của BC (gt)
⇒ BM = CM
Do ∆ABC cân tại A (gt)
⇒ AB = AC
Xét ∆AMB và ∆AMC có:
AM là cạnh chung
AB = AC (cmt)
BM = CM (cmt)
⇒ ∆AMB = ∆AMC (c-c-c)
b) Sửa đề:
Chứng minh AM EF
Giải:
Gọi D là giao điểm của AM và EF
Do ∆AMB = ∆AMC (cmt)
⇒ ∠MAB = ∠MAC (hai góc tương ứng)
⇒ ∠MAE = ∠MAF
Xét hai tam giác vuông: ∆MAE và ∆MAF có:
AM là cạnh chung
∠MAE = ∠MAF (cmt)
⇒ ∆MAE = ∆MAF (cạnh huyền - góc nhọn)
⇒ AE = AF (hai cạnh tương ứng)
Do ∠MAE = ∠MAF (cmt)
⇒ ∠DAE = ∠DAF
Xét ∆ADE và ∆ADF có:
AD là cạnh chung
∠DAE = ∠DAF (cmt)
AE = AF (cmt)
⇒ ∆ADE = ∆ADF (c-g-c)
⇒ ∠ADE = ∠ADF (hai góc tương ứng)
Mà ∠ADE + ∠ADF = 180⁰ (kề bù)
⇒ ∠ADE = ∠ADF = 180⁰ : 2 = 90⁰
⇒ AD ⊥ EF
a: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ABDC là hình chữ nhật
Suy ra: CD\(\perp\)AC
b: Xét ΔCEA có
CH là đường cao
CH là đường trung tuyến
Do đó:ΔCEA cân tại C
=>CE=CA
mà CA=BD
nên BD=CE
A D B C H M E
a/ Xét 2 tam giác MDC và MAB có MA=MD (gt), MB=MC (gt), góc DMC=góc AMB (đối đỉnh)
=> tam giác MDC = tam giác MAB
=> Góc CBA=góc BCD (Góc tương ứng)
Xét \(\Delta ABC\)có \(\widehat{CBA}+\widehat{ACB}=90^0\)(Tính chất Tam giác vuông)
=> \(\widehat{BCD}+\widehat{ACB}=90^0=\widehat{ACD}\) => \(CD\perp AC\)
b/ Xét 2 tam giác vuông CHE và CHA có: CH (chung); HE=HA (gt); Tam giác vuông tại H
=> \(\Delta CHE=\Delta CHA\)=> CA=CE (2 cạnh tương ứng) => \(\Delta CAE\)cân tại C
- Xét tam giác AFM vuông tại F có:
AF2+FM2=AM2 (định lí Py-ta-go).
=>FM2=AM2-AF2. (1)
- Xét tam giác BFM vuông tại F có:
BF2+FM2=BM2 (định lí Py-ta-go).
=>FM2=BM2-BF2 (2)
- Từ (1) và (2) suy ra: AM2-AF2=BM2-BF2 (7)
- Xét tam giác MBD vuông tại D có:
MD2+BD2=BM2 (định lí Py-ta-go).
=>MD2=BM2-BD2 (3)
- Xét tam giác MCD vuông tại D có:
MD2+DC2=MC2 (định lí Py-ta-go).
=>MD2=MC2-DC2 (4)
- Từ (3) và (4) suy ra: BM2-BD2=MC2-DC2 (8)
- Xét tam giác MEC vuông tại E có:
ME2+EC2=MC2 (định lí Py-ta-go).
=>ME2=MC2-EC2 (5)
- Xét tam giác MEA vuông tại E có:
ME2+AE2=MA2 (định lí Py-ta-go).
=>ME2=MA2-AE2 (6)
- Từ (5) và (6) suy ra: MC2-EC2=MA2-AE2 (9)
- Từ (7),(8),(9) suy ra:
AM2-AF2+BM2-BD2+MC2-EC2=BM2-BF2+MC2-DC2+MA2-AE2
=>-AF2-BD2-EC2=-BF2-DC2-AE2
=>AF2+BD2+EC2=BF2+DC2+AE2