Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
Ta có:
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}\) và \(\dfrac{b+c}{a}=\dfrac{c+a}{b}\)
\(\Rightarrow1+\dfrac{a+b}{c}=1+\dfrac{b+c}{a}\)và \(1+\dfrac{b+c}{a}=1 +\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{c}{c}+\dfrac{a+b}{c}=\dfrac{a}{a}+\dfrac{b+c}{a}\)và \(\dfrac{a}{a}+\dfrac{b+c}{a}=\dfrac{b}{b}+\dfrac{c+a}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}=\dfrac{a+b+c}{a}\)và \(\dfrac{a+b+c}{a}=\dfrac{a+b+c}{b}\)
\(\Rightarrow\dfrac{a+b+c}{c}-\dfrac{a+b+c}{a}=0\) \(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{c}-\dfrac{1}{a}\right)=0\)
và \(\dfrac{a+b+c}{a}-\dfrac{a+b+c}{b}=0\)
\(\Rightarrow\left(a+b+c\right)\cdot\left(\dfrac{1}{a}-\dfrac{1}{b}\right)=0\)
+) Vì a,b,c đôi một khác 0
\(\Rightarrow a+b+c=0\)
\(\rightarrow a+b=\left(-c\right)\)
\(\rightarrow a+c=\left(-b\right)\)
\(\rightarrow b+c=\left(-a\right)\)
+) Ta có:
\(M=\left(1+\dfrac{a}{b}\right)\cdot\left(1+\dfrac{b}{c}\right)\cdot\left(1+\dfrac{c}{a}\right)\)
\(=\left(\dfrac{a+b}{b}\right)\cdot\left(\dfrac{b+c}{a}\right)\cdot\left(\dfrac{c+a}{c}\right)\)
\(=\dfrac{-c}{b}\cdot\dfrac{-a}{c}\cdot\dfrac{-b}{a}\)
\(=\left(-1\right)\)
Bài 2:
a)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}=\dfrac{a+b+c}{a+b+c}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)
=> a = b = c
b)
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}\)
=> x = y = z (theo a)
Thay x = y = z vào biểu thức, ta có:
\(M=\dfrac{x^{333}.x^{666}}{x^{999}}=1\)
c)
\(ac=b^2\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\)
\(ab=c^2\Rightarrow\dfrac{b}{c}=\dfrac{c}{a}\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Rightarrow a=b=c\)
Thay a = b = c vào biểu thức, ta có:
\(M=\dfrac{a^{333}}{a^{111}.a^{222}}=1\)
a: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{k}{k-1}\)
\(\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{k}{k-1}\)
Do đó: \(\dfrac{a}{a-b}=\dfrac{c}{c-d}\)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\left(\dfrac{a+b}{c+d}\right)^2=\left(\dfrac{bk+b}{dk+d}\right)^2=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\left(\dfrac{a+b}{c+d}\right)^2=\dfrac{a^2+b^2}{c^2+d^2}\)
Đặt \(\dfrac{a}{2007}=\dfrac{b}{2008}=\dfrac{c}{2009}=k\)
=>a=2007k; b=2008k; c=2009k
\(4\left(a-b\right)\left(b-c\right)=4\left(2007k-2008k\right)\left(2008k-2009k\right)\)
\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)
\(\left(c-a\right)^2=\left(2009k-2007k\right)^2=4k^2\)
Do đó: \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)
bạn sửa hộ mik \(\left(\dfrac{a^2+b^2}{c^2+d^2}\right)^2\) thành\(\dfrac{a^2+b^2}{c^2+d^2}\)nha!!
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
4/ \(\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{y}{20}\\\dfrac{y}{20}=\dfrac{z}{24}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}=k\) (đặt k)
Suy ra \(x=15k;y=20k;z=24k\)
Thay vào,ta có:
\(M=\dfrac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
Ta có: \(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2007.b}{2007.c}\)
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{2007.b}{2007.c}=\dfrac{a+2007.b}{b+2007.c}\Rightarrow\dfrac{a}{b}.\dfrac{b}{c}=\left(\dfrac{a+2007.b}{b+2007.c}\right)^2\Leftrightarrow\dfrac{a}{c}=\dfrac{\left(a+2007.b\right)^2}{\left(b+2007.c\right)^2}\)
Vậy...