Cho a,b,c\(\in\)R và a,b,c 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2021

\(b^2=a.c\)\(=>\frac{a}{b}=\frac{b}{c}\)

Đặt : \(\frac{a}{b}=\frac{b}{c}=k\)

Ta có : \(a=b.k\)  

            \(b=c.k\)

\(=>\)\(\frac{a}{c}=\frac{b.k}{c}=\frac{c.k+k}{c}=k^2\left(1\right)\)

\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012c}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\left(2\right)\)

Từ (1) và (2) \(=>\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(đpcm\right)\)

Hok tốt~

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời giải:

$b.b=ac\Rightarrow \frac{b}{c}=\frac{a}{b}$.
Đặt $\frac{b}{c}=\frac{a}{b}=k\Rightarrow b=ck; a=bk$.

Khi đó:

$\frac{a}{c}=\frac{bk}{c}=\frac{ck.k}{c}=k^2(1)$

Và:

$\frac{(a+2011b)^2}{(b+2011c)^2}=\frac{(bk+2011b)^2}{(ck+2011c)^2}$

$=\frac{b^2(k+2011)^2}{c^2(k+2011)^2}=\frac{b^2}{c^2}=\frac{(ck)^2}{c^2}=k^2(2)$

Từ $(1);(2)$ ta có đpcm.

 

19 tháng 4 2016

Bài 2:

a)Ta có: 4100​=(22)100=2200

Do 2200<2202

Vậy 4100<2202

3 tháng 5 2021

Em mới lớp 6 còn ngu nên ko biếtttttttttttttttt

3 tháng 5 2021

a, theo pytago ta có:

AB2+AC2=BC2 <=> AC=\(\sqrt{10^2-6^2}\)=8 (cm)

so sánh: BAC>ABC>ACB vì BC>AC>AB

b, vì A là trung điểm BD nên CA là trung tuyến của tam giác DBC

mà CA\(\perp\)BD nên CA là đường cao của tam giác DBC

=> CA vừa là trung tuyến vừa là đường cao của tam giác DBC nên DBC cân ở C

NM
8 tháng 11 2021

a. ta có : \(\frac{5}{-3}=\frac{15}{-9}=-\frac{15}{9}\)

b.\(-\frac{1}{5}< 0< \frac{1}{100}\Rightarrow-\frac{1}{5}< \frac{1}{100}\)

c.\(\hept{\begin{cases}2^3=8\\3^2=9\end{cases}\Rightarrow2^3< 3^2}\)

18 tháng 6 2021

a) A + x2 - 4xy2 + 2xz - 3y2 = 0

=> A =  -x2 + 4xy2 - 2xz + 3y2

b) B + 5x2 - 2xy = 6x2 + 9xy - y2

=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2

c) 3xy - 4y2 - A = x2 - 7xy + 8y2

=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2

18 tháng 6 2021

Trả lời:

a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0 

=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2

b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2 

=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2

c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2 

=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2

d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2 

10 tháng 6 2017

A B C D E F

a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:

BD:cạnh chung; góc ABD= góc EBD(gt)

Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)

=> AB=EB; AD=ED(cặp cạnh tương ứng)

Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE

=> BD là đường trung trực của AE(đpcm)

b, Xét tam giác ADF và tam giác EDC ta có:

góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)

Do đó tam giác ADF=tam giác EDC(g.c.g)

=> DF=DC(cặp cạnh tương ứng) (đpcm)

c, Xét tam giác DEC vuông tại E ta có:

DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)

mà DE=DA=> DA<DC(đpcm)

d, Vì tam giác ADF=tam giác EDC(cm câu b)

=> AF=EC(cặp cạnh tương ứng)

Ta có: BF=BA+AF; BC=BE+EC

mà BA=BE;AF=EC(đã cm)

=> BF=BC

=> tam giác BCF cân tại B

mặc khác ta có: BA=BE(cm câu a)

=> tam giác ABE cân tại B

Xét tam giác BCF và tam giác ABE cân tại B ta có:

góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)

=> góc BAE=góc BFC

=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)

Chúc bạn học tốt!!!

10 tháng 6 2017

B A E F C D

a, Xét \(\Delta BAD\)\(\Delta BED\) có:

\(\widehat{BAD}=\widehat{BED}=90^0\)

BD chung

\(\widehat{ABD}=\widehat{EBD}\) (do BD là phân giác \(\widehat{ABC}\))

\(\Rightarrow\Delta BAD=\Delta BED\left(CH-GN\right)\)

\(\Rightarrow AB=EB\Rightarrow\) B nằm trên trung trực của AE (1)

\(AD=ED\Rightarrow\) D nằm trên trung trực của AE (2)

Từ (1) và (2) => BD là trung trực của AE

Vậy BD là trung trực của AE.

b, Xét \(\Delta ADF\)\(\Delta EDC\) có:

\(\widehat{DAF}=\widehat{DEC}=90^0\)

AD=ED

\(\widehat{ADF}=\widehat{EDC}\) (đối đỉnh)

\(\Rightarrow\Delta ADF=\Delta EDC\left(g-c-g\right)\)

=> DF=DC.

Vậy DF=DC

c, Ta có: tam giác ADF vuông tại A=> cạnh huyền DF>AD (3)

Mà DF=DC (4)

Từ (3) và (4) => AD<DC

Vậy AD<DC

d, Ta có:

+) CA là đường cao từ C của tam giác BCF

+) FE là đường cao từ F của tam giác BCF

Mà CA và FE cắt nhau tại D => D là trực tâm của tam giác BCF

=> BD là đường cao từ B của tam giác BCF => \(BD\perp FC\) (5)

Mặt khác, BD là trung trực của AE \(\Rightarrow BD\perp AE\) (6)

Từ (5) và (6) => AE//FC

Vậy AE//FC

14 tháng 6 2017

Hình vẽ:

A C B E K D

a/ Xét 2Δ vuông:ΔACE và ΔAKE có:

AE: chung

\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)

=> ΔACE = ΔAKE (ch-gn)

=> AC = AK (đpcm)

b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)

\(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)

=> \(\widehat{KAE}=\widehat{B}=30^o\)

=> \(\Delta EAB\) cân tại E

mà EK _l_ AB (gt)

=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)

=> KA = KB (đpcm)

c/ Xét \(\Delta EAB\) có:

EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)

AC _l_ BE ké dài (gt)

=> EK, BD, AC đồng quy tại 1 điểm (đpcm)

14 tháng 6 2017

đáp án ở đây bạn nha trừ câu c):

https://hoc24.vn/hoi-dap/question/59956.html

12 tháng 6 2017

A B C G H

a) Ta có:

\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến

\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)

Xét \(\Delta ABH\) vuông tại H, ta có:

\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )

\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)

\(\Rightarrow AH=4\left(cm\right)\) (AH>0)

Vậy BH=3 cm; AH=4 cm

12 tháng 6 2017

Tham khảo hình bài làm đầy đủ :

Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến

Chúc bn học tốt!