\(a,b,c\in Z_+\)  và  \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2016

\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\Leftrightarrow\frac{1}{a+1}=\left(1-\frac{1}{b+1}\right)+\left(1-\frac{1}{c+1}\right)\Leftrightarrow\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\)

Tương tự: \(\frac{1}{b+1}=\frac{a}{a+1}+\frac{c}{c+1}\)\(\frac{1}{c+1}=\frac{a}{a+1}+\frac{b}{b+1}\)

Áp dụng bất đẳng thức Cosi, ta có : \(\frac{1}{a+1}=\frac{b}{b+1}+\frac{c}{c+1}\ge2\sqrt{\frac{bc}{\left(b+1\right)\left(c+1\right)}}\)(1)

Tương tự : \(\frac{1}{b+1}\ge2\sqrt{\frac{ac}{\left(a+1\right)\left(c+1\right)}}\) (2) ; \(\frac{1}{c+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)(3) 

Nhân (1) , (2) , (3) theo vế được : \(\frac{1}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge8\sqrt{\frac{a^2b^2c^2}{\left(a+1\right)^2\left(b+1\right)^2\left(c+1\right)^2}}\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{8abc}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\Leftrightarrow1\ge8abc\Leftrightarrow abc\le\frac{1}{8}\)(đpcm)

10 tháng 7 2016

\(\frac{1}{c+1}=1-\frac{1}{a+1}+1-\frac{1}{b+1}=\frac{a}{a+1}+\frac{b}{b+1}\ge2\sqrt{\frac{ab}{\left(a+1\right)\left(b+1\right)}}\)

sau đó bạn cmtt rồi nhân 3 vế lại là ok

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

20 tháng 11 2016

a)Ta có:\(\left(p-a\right)\left(p-b\right)\le\frac{2p-b-a}{2}=\frac{c^2}{4}\)

Tương tự ta có: \(\left(p-a\right)\left(p-c\right)\le\frac{b^2}{4};\left(p-b\right)\left(p-c\right)\le\frac{c^2}{4}\)

\(\Rightarrow\left[\left(p-a\right)\left(p-b\right)\left(p-c\right)\right]^2\le\left(\frac{abc}{8}\right)^2\)

\(\Rightarrow\left(p-a\right)\left(p-b\right)\left(p-c\right)\le\frac{abc}{8}\)

b)\(VT=\frac{2}{-a+b+c}+\frac{2}{a-b+c}+\frac{2}{a+b-c}\)

\(=\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}+\frac{1}{-a+b+c}+\frac{1}{a-b+c}+\frac{1}{a+b-c}\)

\(\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

c giải sau ăn cơm đã

NV
13 tháng 10 2019

\(\Leftrightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}-7\le0\)

Đặt \(P=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}-7\)

Không mất tỉnh tổng quát, giả sử \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow ab+bc\ge b^2+ac\Rightarrow\left\{{}\begin{matrix}\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\\1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow P\le\frac{a}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{a}+2-7=2\left(\frac{a}{c}+\frac{c}{a}\right)-5\)

Do \(1\le a\le c\le2\Rightarrow1\le\frac{c}{a}\le2\)

Đặt \(\frac{c}{a}=x\Rightarrow1\le x\le2\)

\(\Rightarrow P\le2\left(x+\frac{1}{x}\right)-5=\frac{2x^2-5x+2}{x}=\frac{\left(2x-1\right)\left(x-2\right)}{x}\le0\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị

13 tháng 10 2019

=\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng hệ quả của bđt côsi \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b >0 ta có BĐT cuối cùng luôn đúng

vậy .....

1 tháng 1 2018

ta có A=\(\frac{1}{a^2+2a+2+b^2}+\frac{1}{b^2+2b+2+c^2}+\frac{1}{c^2+2c+2+a^2}\)

Áp dụng bđt cô si, ta có \(a^2+b^2\ge2ab\) =>\(\frac{1}{a^2+b^2+2a+2}\le\frac{1}{2ab+2a+2}\)

tương tự, rồi + vào, ta có 

\(\le\frac{1}{2}\left(\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}\right)\)

mà với abc=1 thì ta luôn chứng minh được \(\frac{1}{a+ab+1}+\frac{1}{b+bc+1}+\frac{1}{c+ca+1}=1\)

=> A <= 1/2 (ĐPCM)

dấu = xảy ra <=> a=b=c=1

^_^

\(1.\)\(Cho\)\(a,b\ge0.\)   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)   \(CM:\)\(abc\le\frac{1}{8}.\)\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)\(4.\)Với ∀\(a,b,c\ge0.\)   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le...
Đọc tiếp

\(1.\)\(Cho\)\(a,b\ge0.\)

   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)
\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)
   \(CM:\)\(abc\le\frac{1}{8}.\)
\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)
   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)

\(4.\)Với ∀\(a,b,c\ge0.\)
   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le a^7+b^7+c^7.\)

\(5.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^5}{b^3c}+\frac{b^5}{c^3a}+\frac{c^5}{a^3b}\ge a+b+c.\)

\(6.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^3b}{c}+\frac{b^3c}{a}+\frac{c^3a}{b}\ge ab^2+bc^2+ca^2.\)

\(7.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=3.\)
   \(CM:\)\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}.\)
\(8.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}.\)
\(9.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=1.\)
   \(CM:\)\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}.\)

\(10.\)\(Cho\)\(a,b,c>0.\)

   \(CM:\)\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}.\)

2
13 tháng 8 2016

\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)

\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)

\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)

     \(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)

     \(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)

     \(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)

14 tháng 8 2016

\(2.\)    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
     \(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

                       \(\ge\frac{b}{1+b}+\frac{c}{1+c}\) 
                       \(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

   \(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
   \(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\)                                 \(1\ge8abc\)

\(\Leftrightarrow\)                            \(abc\ge\frac{1}{8}\left(đpcm\right).\)