\(a,b,c\in R\) thỏa \(\left(a+b+c\right)^3=\left(a+b-c\r...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(a+b+c\right)^3=\left(a+b+c\right)\left[\left(a+b-c\right)^2+\left(b+c-a\right)^2+\left(c+a-b\right)^2-\left(a+b-c\right)\left(b+c-a\right)-\left(b+c-a\right)\left(c+a-b\right)-\left(a+b-c\right)\left(c+a-b\right)\right]\)\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b+c\right)^2-\left(a+b-c\right)^2-\left(b+c-a\right)^2-\left(c+a-b\right)^2+\left(a+b-c\right)\left(b+c-a\right)+\left(b+c-a\right)\left(c+a-b\right)+\left(a+b-c\right)\left(c+a-b\right)\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left[4ac+4bc-2\left(a^2-2ab+b^2\right)-2c^2-\left(a^2-2ac+c^2\right)+b^2-\left(a^2-2ab+b^2\right)+c^2-\left(b^2-2bc+c^2\right)+a^2\right]=0\)\(\Leftrightarrow\left(a+b+c\right)\left[a^2+b^2+c^2-2ab-2bc-2ac\right]=0\)

Đến đây bí thật rồi TT

2 tháng 5 2020

mày bị thần kinh à

1 tháng 1 2017

Ta có:

\(a+b+c+\sqrt{abc}=4\)

\(\Leftrightarrow4a+4b+4c+4\sqrt{abc}=16\)

Ta lại có:

a(4 - b)(4 - c) =  a(16 - 4b - 4c + bc) = a(4a + bc + \(4\sqrt{abc}\))

= (4a2 + \(4a\sqrt{abc}\)+ abc)

= (\(2a+\sqrt{abc}\))2

Tương tự ta có

b(4 - c)(4 - a) = (\(2b+\sqrt{abc}\))2

c(4 - a)(4 - b) = (\(2c+\sqrt{abc}\))2

Từ đây ta có

\(A= 2a+2b+2c+3\sqrt{abc}-\sqrt{abc}\)

\(=8\)     

1 tháng 1 2017

Nhầm 

\(a+b+c-\sqrt{abc}=4\)

Thành

\(a+b+c+\sqrt{abc}=4\)

Mà thôi cũng làm tương tự thôi nên bạn tự làm lại nhé

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Y
24 tháng 5 2019

Theo bđt AM-GM :

\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\)\(\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3a}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}=\frac{b+1}{8}=\frac{c+1}{8}\)

\(\Leftrightarrow2a=b+1=c+1\)

+ Tương tự ta cm đc :

\(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=b+1=c+1\)

\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3c}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow2a=a+1=b+1\)

Do đó : \(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+b+c+3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)

Dấu "=" xảy ra <=> a = b = c = 1

24 tháng 5 2019

Áp dụng bđt AM-GM

\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3}{4}a\)

\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+b}{8}\ge\frac{3}{4}b\)

\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)

\(\Rightarrow A+\frac{6+2a+2b+2c}{8}\ge\frac{3}{4}\left(a+b+c\right)\)

\(\Rightarrow A+\frac{3}{4}\ge\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{2}\sqrt[3]{abc}=\frac{3}{2}\)

\(\Rightarrow A\ge\frac{3}{4}\)

\("="\Leftrightarrow a=b=c=1\)

11 tháng 11 2019

2/ Không mất tính tổng quát, giả sử \(c=min\left\{a,b,c\right\}\).

Nếu abc = 0 thì có ít nhất một số bằng 0. Giả sử c = 0. BĐT quy về: \(a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Đẳng thức xảy ra khi a = b; c = 0.

Nếu \(abc\ne0\). Chia hai vế của BĐT cho \(\sqrt[3]{\left(abc\right)^2}\)

BĐT quy về: \(\Sigma_{cyc}\sqrt[3]{\frac{a^4}{b^2c^2}}+3\ge2\Sigma_{cyc}\sqrt[3]{\frac{ab}{c^2}}\)

Đặt \(\sqrt[3]{\frac{a^2}{bc}}=x;\sqrt[3]{\frac{b^2}{ca}}=y;\sqrt[3]{\frac{c^2}{ab}}=z\Rightarrow xyz=1\)

Cần chúng minh: \(x^2+y^2+z^2+3\ge2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\Leftrightarrow x^2+y^2+z^2+2xyz+1\ge2\left(xy+yz+zx\right)\) (1)

Theo nguyên lí Dirichlet thì trong 3 số x - 1, y - 1, z - 1 tồn tại ít nhất 2 số có tích không âm. Không mất tính tổng quát, giả sử \(\left(x-1\right)\left(y-1\right)\ge0\)

\(\Rightarrow2xyz\ge2xz+2yz-2z\). Thay vào (1):

\(VT\ge x^2+y^2+z^2+2xz+2yz-2z+1\)

\(=\left(x-y\right)^2+\left(z-1\right)^2+2xy+2xz+2yz\)

\(\ge2\left(xy+yz+zx\right)\)

Vậy (1) đúng. BĐT đã được chứng minh.

Đẳng thức xảy ra khi a = b = c hoặc a = b, c = 0 và các hoán vị.

Check giúp em vs @Nguyễn Việt Lâm, bài dài quá:(

6 tháng 7 2020

Để đưa về chứng minh $(1)$ và $(2)$ ta dùng:

Định lí SOS: Nếu \(X+Y+Z=0\) thì \(AX^2+BY^2+CZ^2\ge0\)

khi \(\left\{{}\begin{matrix}A+B+C\ge0\\AB+BC+CA\ge0\end{matrix}\right.\)

Chứng minh: Vì \(\sum\left(A+C\right)=2\left(A+B+C\right)\ge0\)

Nên ta có thể giả sử \(A+C\ge0\). Mà $X+Y+Z=0$ nên$:$

\(AX^2+BY^2+CZ^2=AX^2+BY^2+C\left[-\left(X+Y\right)\right]^2\)

\(={\frac { \left( AX+CX+CY \right) ^{2}}{A+C}}+{\frac {{Y}^{2} \left( AB+AC+BC \right) }{A+C}} \geq 0\)

24 tháng 7 2019

tạm thời chưa nghĩ ra cách dùng \(a^3+b^3\ge a^2b+ab^2=ab\left(a+b\right)\) :'< 

Có: \(\sqrt[3]{4\left(a^3+b^3\right)}=\sqrt[3]{2\left(a+b\right)\left(2a^2-2ab+2b^2\right)}\)

\(=\sqrt[3]{2\left(a+b\right)\left[\frac{1}{2}\left(a+b\right)^2+\frac{3}{2}\left(a-b\right)^2\right]}=\sqrt[3]{2\left(a+b\right)\frac{1}{2}\left(a+b\right)^2}=a+b\)

Tương tự cộng lại ta có đpcm 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)

24 tháng 7 2019

ư ư.. ra r :))))))))) cộng thêm Cauchy-Schwarz nữa nhé 

Có: \(a^3+b^3\ge a^2b+ab^2\)\(\Leftrightarrow\)\(2\left(a^3+b^3\right)\ge a^3+b^3+a^2b+ab^2=\left(a+b\right)\left(a^2+b^2\right)\)

\(\Rightarrow\)\(\sqrt[3]{4\left(a^3+b^3\right)}\ge\sqrt[3]{2\left(a+b\right)\left(a^2+b^2\right)}\ge\sqrt[3]{2\left(a+b\right).\frac{\left(a+b\right)^2}{2}}=a+b\)

Tương tự cộng lại ra đpcm 

6 tháng 8 2019

Để ý rằng a, b, c > 0 nên abc > 0, khi đó chia hai vế của bđt cho abc thì sẽ xuất hiện \(\frac{1}{a};\frac{1}{b};\frac{1}{c}\). Đặt ẩn phụ + biến đổi + Cô si cho 6 số thì bài toán đâu đến nổi khó ...

BĐT \(\Leftrightarrow\left(1+\frac{1}{a}\right)\left(1+\frac{1}{b}\right)\left(1+\frac{1}{c}\right)\ge\frac{8}{abc}\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\). Bài toán trở thành:

Cho x, y, z > 0 thỏa mãn x + y + z = 3. Chứng minh:

\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\ge8xyz\)

Nhân hai vế của BĐT với 27, ta cần chứng minh:

\(\left(3x+3\right)\left(3y+3\right)\left(3z+3\right)\ge216xyz\)

\(\Leftrightarrow\left(x+x+x+x+y+z\right)\left(y+y+y+x+y+z\right)\left(z+z+z+x+y+z\right)\ge216xyz\)

Đơn giản chưa:v Cô si cho 6 số ở mỗi cái ngoặc là ra:D Cách này mà sai thì em chịu đấy nhé;) Tự c/m Cô si cho 6 số.

6 tháng 8 2019

a lm phần cô-si 6 số đi