Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\)
\(S=\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\hept{\begin{cases}\frac{a}{c}+\frac{c}{a}\ge2\sqrt{\frac{ac}{ca}}=2\\\frac{b}{c}+\frac{c}{b}\ge2\sqrt{\frac{bc}{cb}}=2\\\frac{b}{a}+\frac{a}{b}\ge2\sqrt{\frac{ab}{ba}}=2\end{cases}}\)
\(\Rightarrow\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{b}{a}+\frac{a}{b}\right)\ge2+2+2=6\)
\(\Leftrightarrow\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
\(\Leftrightarrow S\ge6\left(đpcm\right)\)
\(\Rightarrow S_{min}=6\)
Dấu " = " xảy ra khi \(a=b=c\)
Chúc bạn học tốt !!!
\(\left\{{}\begin{matrix}s_1=\dfrac{b}{a}x+\dfrac{c}{a}z\\s_2=\dfrac{a}{b}x+\dfrac{c}{b}y\\s_3=\dfrac{a}{c}z+\dfrac{b}{c}y\\x+y+z=5\end{matrix}\right.\) \(\left\{{}\begin{matrix}s_1+s_2+s_3=\left(\dfrac{b}{a}+\dfrac{a}{b}\right)x+\left(\dfrac{c}{b}+\dfrac{b}{c}\right)y+\left(\dfrac{a}{c}+\dfrac{c}{a}\right)z\\a,b,c\in N\left(sao\right)\\\dfrac{b}{a}+\dfrac{a}{b}\ge2;\left(\dfrac{c}{b}+\dfrac{b}{c}\right)\ge2;\left(\dfrac{a}{c}+\dfrac{c}{a}\right)\ge2\\x+y+z=5\end{matrix}\right.\)
\(s_1+s_2+s_3\ge2x+2y+2z\ge2\left(x+y+z\right)=2.5=10\)
1.VT= \(\dfrac{x}{z}+\dfrac{y}{z}+\dfrac{y}{x}+\dfrac{z}{x}+\dfrac{z}{y}+\dfrac{x}{y}=\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+\left(\dfrac{x}{z}+\dfrac{z}{x}\right)+\left(\dfrac{y}{z}+\dfrac{z}{y}\right)\)
Áp dụng BĐT Cô-si cho 2 số dương, ta có:
\(\dfrac{x}{y}+\dfrac{y}{x}\)≥ 2\(\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)=2; tương tự \(\dfrac{x}{z}+\dfrac{z}{x}\)≥2; \(\dfrac{y}{z}+\dfrac{z}{y}\)≥2.
Cộng 3 BĐT trên, ta được đpcm.
2.Đặt b+c-a= x, a+c-b= y, a+b-c= z. Khi đó x,y,z>0.
2a= y+z; 2b= x+z; 2c= x+y. Khi đó bđt cần chứng minh trở thành:
\(\dfrac{x+y}{z}+\dfrac{y+z}{x}+\dfrac{z+x}{y}\)≥6.
Theo bài 1 bđt luôn đúng
Lời giải:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{1}{a}+\frac{1}{b}\right)(a+b)\ge (1+1)^2\)
\(\Leftrightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}\)
\(\Rightarrow \frac{c}{a}+\frac{c}{b}\geq \frac{4c}{a+b}\)
Hoàn toàn tương tự: \(\frac{a}{b}+\frac{a}{c}\geq \frac{4a}{b+c}; \frac{b}{a}+\frac{b}{c}\geq \frac{4b}{a+c}\)
Cộng theo vế các BĐT thu được:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\geq 4\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)\) (đpcm)
Dấu bằng xảy ra khi $a=b=c$
Ta có: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{2}{a}\)
\(\Leftrightarrow\dfrac{b+c}{bc}=\dfrac{2}{a}\Leftrightarrow ab+ac=2bc\)
\(\dfrac{a+b}{a-b}+\dfrac{a+c}{a-c}=\dfrac{a^2-ac+ab-bc+a^2+ac-ab-bc}{a^2-ac-ab+bc}\)
\(=\dfrac{2a^2-2bc}{a^2-2bc+bc}=\dfrac{2a^2-2bc}{a^2-bc}=2\)
\(\Rightarrowđpcm\)
e)
\(\dfrac{a^2+b^2+c^2}{3}\ge\left(\dfrac{a+b+c}{3}\right)^2\)
\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ac\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) ( luôn đúng)
=> ĐPCM
a/d vào công thức a^3+b^3+b^3=3abc( khi a+b+c=0)
ta đc 1/a+1/b+1/c=0
=> (1/a)^3+(1/b)^3+(1/c)^3=3. (1/abc)
lại có S=\(\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}\)
=abc (\(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\))
=3.\(\dfrac{abc}{abc}\)=1
chúc bạn học tốt ^ ^
Dễ CM : nếu x+y+z=0 thì x^3+y^3+z^3=3xyz
\(\Rightarrow\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}=\dfrac{3}{abc}\)
\(S=\dfrac{bc}{a^2}+\dfrac{ca}{b^2}+\dfrac{ab}{c^2}=\dfrac{abc}{a^3}+\dfrac{abc}{b^3}+\dfrac{abc}{c^3}=abc\left(\dfrac{1}{a^3}+\dfrac{1}{b^3}+\dfrac{1}{c^3}\right)\\ =abc.\dfrac{1}{abc}=1\)
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\)
\(S=\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{c}+\dfrac{c}{a}\ge2\sqrt{\dfrac{ac}{ca}}=2\\\dfrac{b}{c}+\dfrac{c}{b}\ge2\sqrt{\dfrac{bc}{cb}}=2\\\dfrac{b}{a}+\dfrac{a}{b}\ge2\sqrt{\dfrac{ab}{ba}}=2\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge2+2+2=6\)
\(\Leftrightarrow\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}\ge6\)
\(\Leftrightarrow S\ge6\) ( đpcm )
\(\Rightarrow S_{min}=6\)
Dấu " = " xảy ra khi \(a=b=c\)
cách 1 sử dụng BĐT
a)
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\left(\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\right)\)đã áp cô_si --> áp tới bến luôn
\(S=\left(\dfrac{a}{c}+\dfrac{b}{c}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{c}{b}+\dfrac{a}{b}\right)\ge6\sqrt[6]{\dfrac{\left(abc\right)^2}{\left(abc\right)^2}}=6\) =>dpcm
b) min S=6
khi \(\dfrac{a}{b}=\dfrac{b}{a}=\dfrac{c}{a}=\dfrac{a}{c}=\dfrac{b}{c}=\dfrac{c}{b}\Rightarrow a=b=c\)
cách2sử dụng HĐT \(\left(x-y\right)^2\ge0\forall x,y\)
\(S=\left(\dfrac{a}{b}-2+\dfrac{b}{a}\right)+\left(\dfrac{c}{b}-2+\dfrac{b}{c}\right)+\left(\dfrac{a}{c}-2+\dfrac{c}{a}\right)+6\)
\(S=\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)^2+\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right)^2+\left(\sqrt{\dfrac{a}{c}}-\sqrt{\dfrac{c}{a}}\right)^2+6\ge6\)=> dpcm
Min S=6
khi \(\left\{{}\begin{matrix}\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\\\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\\\left(\sqrt{\dfrac{c}{b}}-\sqrt{\dfrac{b}{c}}\right)=0\end{matrix}\right.\)\(\Rightarrow a=b=c\)