\(a,b,c\inℝ\). Chứng minh \(\left|a\right|+\left|b\right|+\left|...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

29 tháng 4 2020

đang luyện Bu-nhi-a-cốp-ski :)) 

lời giải

Áp dụng BĐT Bu-nhi-a-cốp-ski,ta có :

\(\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\ge\left(a+b+c\right)^2\)

\(\Rightarrow\frac{3}{4}\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\ge\frac{3\left(a+b+c\right)^2}{4}\)

Cần chứng minh : \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{3}{4}\left(a^2+1\right)\left[1+\left(b+c\right)^2\right]\)

\(\Leftrightarrow4\left(b^2c^2+b^2+c^2+1\right)\ge3\left(b^2+c^2+2bc+1\right)\)

\(\Leftrightarrow\left(2bc-1\right)^2+\left(b-c\right)^2\ge0\)

Dấu"=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{a}{1}=\frac{1}{b+c}\\b=c\\2bc=1\end{cases}}\Leftrightarrow a=b=c=\pm\frac{1}{\sqrt{2}}\)

@Cool Kid:\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)Hay một BĐT mạnh (và đẹp:v) hơn là: \(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)Ta cần chứng...
Đọc tiếp

@Cool Kid:

\(a^3+b^3+c^3+3abc\ge\Sigma ab\sqrt{2\left(a^2+b^2\right)}\)

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{\sqrt{2\left(a^2+b^2\right)}+a+b}\)

Hay một BĐT mạnh (và đẹp:v) hơn là: 

\(\Leftrightarrow\Sigma\frac{1}{2}\left(a+b-c\right)\left(a-b\right)^2\ge\Sigma\frac{ab\left(a-b\right)^2}{2\left(a+b\right)}\)

Ta cần chứng minh: \(VT-VP=\Sigma\frac{\left(a+b-c\right)^2\left(a-b\right)^2}{2\left(a+b\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Giả sử \(a\ge c\ge b\) và đặt \(a=b+u+v,c=b+v\)

Bất đẳng thức này đúng theo Cauchy-Schwawrz:

\(VT-VP\ge\frac{4\left(c+a-b\right)^2\left(c-a\right)^2}{4\left(a+b+c\right)}-\frac{\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge0\)

Last inequality is: https://imgur.com/tRsHOfr (mình không gửi ảnh được nên gửi link vậy!)

Done!

0
28 tháng 9 2017

moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau 

vd: A={xeN/3<x<9}

thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung 

co sua nhu vay A=3,4,5,6,7,8

ko biet hay sai mong ae giup minh

30 tháng 9 2017

Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)

=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)

=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)

Mấy cái kia làm tương tự cậu nhé 

Dấu "=" xảy ra khi và chỉ khi a=b=c=1

AH
Akai Haruma
Giáo viên
8 tháng 5 2019

Lời giải:

\(\frac{a}{(a+1)(b+1)}+\frac{b}{(b+1)(c+1)}+\frac{c}{(c+1)(a+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow \frac{a(c+1)+b(a+1)+c(b+1)}{(a+1)(b+1)(c+1)}\geq \frac{3}{4}\)

\(\Leftrightarrow 4[a(c+1)+b(a+1)+c(b+1)]\geq 3(a+1)(b+1)(c+1)\)

\(\Leftrightarrow 4(ab+bc+ac+a+b+c)\geq 3[(ab+bc+ac)+(a+b+c)+abc+1]\)

\(\Leftrightarrow ab+bc+ac+a+b+c\geq 3(abc+1)=6\)

Điều này luôn đúng do theo BĐT AM-GM thì \(ab+bc+ac+a+b+c\geq 6\sqrt[6]{(abc)^3}=6\)

Ta có đpcm. Dấu "=" xảy ra khi $a=b=c=1$

11 tháng 5 2017

Theo BĐT AM-GM ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\ge\left(a+b+c\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

\(\Rightarrow\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge\left(a+b+c\right)^2\left(1\right)\)

Do 2 BĐT trên cùng có dấu "=" khi \(a=b=c\)

Dễ dàng theo Cauchy-Schwarz ta có:

\(\left(1^2+1^2+1^2\right)\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\left(2\right)\). Giờ cần c/m

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\forall a,b,c\)

Nên cũng chỉ cần chỉ ra

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\) (cmt)

\(\Rightarrow\)\(\left(a+b+c\right)^2\)\(\ge\left(a+b+c\right)\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

Dễ thấy \(a+b+c\ne0\) suy ra \(a+b+c\ge\)\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

BĐT cuối đúng theo AM-GM (cmt) \((3)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\) ta có ĐPCM

P/s:bài này liếc phát ra luôn mà quanh đi quẩn lại chỉ mấy BĐT cơ bản :D

11 tháng 5 2017

C/m lại phần đầu

Cần c/m \((a^2+b^2+c^2)(ab+ac+bc)+\sum_{cyc}(a^2-b^2)^2\geq(a^2+b^2+c^2)^2\)

\(\Leftrightarrow \sum_{cyc}(a^4+a^3b+a^3c-4a^2b^2+a^2bc)\geq0\)

\(\Leftrightarrow \sum_{cyc}(a^4-a^3b-a^3c+a^2bc)+2\sum_{cyc}ab(a-b)^2\geq0\)

Đúng theo Schur

13 tháng 10 2016

đi ,nt ,mình giải cho

13 tháng 10 2016

nt là gì