\(\ge0\)thỏa a+b+c=1. Chứng minh rằng \(\frac{a}{1+a^2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng AM-GM ta có : \(\frac{a}{a^2+1}=\frac{a}{a^2+\frac{1}{9}+\frac{8}{9}}\le\frac{a}{\frac{2a}{3}+\frac{8}{9}}=\frac{9a}{6a+8}\)

Áp dụng BĐT : \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)với \(x,y,z>0\)( Dễ dàng CM bằng AM-GM )

\(\left(6a+8+6b+8+6c+8\right)\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\ge9\)

\(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\ge\frac{9}{30}=\frac{3}{10}\)

Ta có : \(\frac{9a}{6a+8}=\frac{3}{2}-\frac{12}{6a+8}\)

\(\rightarrow\frac{9a}{6a+8}+\frac{9b}{6b+8}+\frac{9c}{6c+8}=\frac{9}{2}-12\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\)

Lại có : \(\frac{9}{2}-12\left(\frac{1}{6a+8}+\frac{1}{6b+8}+\frac{1}{6c+8}\right)\le\frac{9}{2}-12.\frac{3}{10}=\frac{9}{2}-\frac{18}{5}=\frac{9}{10}\)

24 tháng 5 2021

Các bạn giúp mình với !

1 tháng 3 2017

mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !

1 tháng 3 2017

bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu

bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)

những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện

\(1.\)\(Cho\)\(a,b\ge0.\)   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)   \(CM:\)\(abc\le\frac{1}{8}.\)\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)\(4.\)Với ∀\(a,b,c\ge0.\)   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le...
Đọc tiếp

\(1.\)\(Cho\)\(a,b\ge0.\)

   \(CM: \)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}.\)
\(2.\)\(Cho\)\(a,b,c\ge0\) và \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2.\)
   \(CM:\)\(abc\le\frac{1}{8}.\)
\(3.\)\(Cho\)\(a,b,c,d\ge0\) và \(\frac{a}{1+a}+\frac{2b}{b+1}+\frac{3c}{1+c}\le1.\)
   \(CM:\)\(ab^2c^3< \frac{1}{5^6}.\)

\(4.\)Với ∀\(a,b,c\ge0.\)
   \(CM:\)\(a^4b^2c+b^4c^2a+c^4a^2b\le a^7+b^7+c^7.\)

\(5.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^5}{b^3c}+\frac{b^5}{c^3a}+\frac{c^5}{a^3b}\ge a+b+c.\)

\(6.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^3b}{c}+\frac{b^3c}{a}+\frac{c^3a}{b}\ge ab^2+bc^2+ca^2.\)

\(7.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=3.\)
   \(CM:\)\(\frac{a}{b^2+1}+\frac{b}{c^2+1}+\frac{c}{a^2+1}\ge\frac{3}{2}.\)
\(8.\)\(Cho\)\(a,b,c>0.\)
   \(CM:\)\(\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{a+b+c}{2}.\)
\(9.\)\(Cho\)\(a,b,c>0\) và \(a+b+c=1.\)
   \(CM:\)\(\frac{ab}{c+1}+\frac{bc}{a+1}+\frac{ca}{b+1}\le\frac{1}{4}.\)

\(10.\)\(Cho\)\(a,b,c>0.\)

   \(CM:\)\(\frac{1}{a^2+bc}+\frac{1}{b^2+ac}+\frac{1}{c^2+ab}\le\frac{a+b+c}{2abc}.\)

2
13 tháng 8 2016

\(1.\)\(a^3b^3\left(a^2-ab+b^2\right)\le\frac{\left(a+b\right)^8}{256}\)
\(\Leftrightarrow a^3b^3\left(a^2-ab+b^2\right)\left(a+b\right)\le\frac{\left(a+b\right)^9}{256}\)

\(\Leftrightarrow a^3b^3\left(a+b\right)^3\left(a^3+b^3\right)\le\frac{\left(a+b\right)^{12}}{256}\)

\(VT=ab\left(a+b\right).ab\left(a+b\right).ab\left(a+b\right).\left(a^3+b^3\right)\)

     \(\le\left(\frac{ab\left(a+b\right)+ab\left(a+b\right)+ab\left(a+b\right)+\left(a^3+b^3\right)}{4}\right)^4\)

     \(\le\frac{\left(a^3+3a^2b+3ab^2+b^3\right)^4}{256}\)

     \(\le\frac{\left(a+b\right)^{12}}{256}\left(đpcm\right).\)

14 tháng 8 2016

\(2.\)    \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\ge2\)
     \(\Leftrightarrow\frac{1}{1+a}\ge1-\frac{1}{1+b}+1-\frac{1}{1+c}\)

                       \(\ge\frac{b}{1+b}+\frac{c}{1+c}\) 
                       \(\ge2\sqrt{\frac{bc}{\left(1+b\right)\left(1+c\right)}}\)

   \(\Rightarrow\hept{\begin{cases}\frac{1}{1+b}\ge2\sqrt{\frac{ac}{\left(1+a\right)\left(1+c\right)}}\\\frac{1}{1+c}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\end{cases}}\)
   \(\Rightarrow\frac{1}{1+a}.\frac{1}{1+b}.\frac{1}{1+c}\ge8\sqrt{\frac{a^2b^2c^2}{\left(1+a\right)^2.\left(1+b\right)^2.\left(1+c\right)^2}}\)\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow\)                                 \(1\ge8abc\)

\(\Leftrightarrow\)                            \(abc\ge\frac{1}{8}\left(đpcm\right).\)


 

25 tháng 8 2020

Đặt \(\sqrt{a^2-1}=x;\sqrt{b^2-1}=y;\sqrt{c^2-1}=z\)ta viết lại thành x2+y2+z2=1.Bất đẳng thức cần chứng minh tương đương với

\(\left(x+y+z\right)\left(\frac{1}{\sqrt{x^2+1}}+\frac{1}{\sqrt{y^2+1}}+\frac{1}{\sqrt{z^2+1}}\right)\le\frac{9}{2}\)

Theo bất đẳng thức Cauchy-Schwarz ta có

\(\frac{x}{\sqrt{x^2+1}}+\frac{y}{\sqrt{y^2+1}}+\frac{z}{\sqrt{z^2+1}}\le\sqrt{\Sigma\frac{3x^2}{2x^2+y^2+z^2}}\le\sqrt{\frac{3}{4}\Sigma\left(\frac{x^2}{x^2+y^2}+\frac{x^2}{x^2+z^2}\right)}=\frac{3}{2}\)

\(\Leftrightarrow\)\( {\displaystyle \displaystyle \sum } \)\(\frac{y+z}{\sqrt{x^2+1}}\le\sqrt{\Sigma\frac{3\left(y+z\right)^2}{2x^2+y^2+z^2}}\le\sqrt{3\Sigma\left(\frac{y^2}{x^2+y^2}+\frac{z^2}{x^2+z^2}\right)}=3\)

Dấu đẳng thức xảy ra khi \(a=b=c=\frac{2}{\sqrt{3}}\)

NV
4 tháng 8 2020

2.

\(8ab-2=3\left(a^4+b^4\right)\ge6a^2b^2\Leftrightarrow3a^2b^2-4ab+1\le0\)

\(\Leftrightarrow\frac{1}{3}\le ab\le1\)

Khi đó:

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}-\frac{2}{ab+1}=\frac{\left(a-b\right)^2\left(ab-1\right)}{\left(a^2+1\right)\left(b^2+1\right)\left(ab+1\right)}\le0\)

\(\Rightarrow\frac{1}{a^2+1}+\frac{1}{b^2+1}\le\frac{2}{ab+1}\)

\(\Rightarrow P\le\frac{2}{ab+1}+\frac{ab}{3a^2b^2+1}\)

Đặt \(ab=x\Rightarrow\frac{1}{3}\le x\le1\Rightarrow P\le\frac{2}{x+1}+\frac{x}{3x^2+1}\)

\(P\le\frac{2}{x+1}+\frac{x}{3x^2+1}-\frac{7}{4}+\frac{7}{4}=\frac{-21x^3+7x^2-3x+1}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\)

\(P\le\frac{\left(7x^2+1\right)\left(1-3x\right)}{4\left(x+1\right)\left(3x^2+1\right)}+\frac{7}{4}\le\frac{7}{4}\) ; \(\forall x\ge\frac{1}{3}\)

\(P_{max}=\frac{7}{4}\) khi \(x=\frac{1}{3}\) hay \(a=b=\frac{1}{\sqrt{3}}\)

NV
4 tháng 8 2020

1.

Ta có: \(4=a^2+b^2+c^2+abc\ge a^2+2bc+abc\)

\(\Leftrightarrow a^2-4+2bc+abc\le0\)

\(\Leftrightarrow\left(a+2\right)\left(a-2\right)+bc\left(a+2\right)\le0\)

\(\Leftrightarrow\left(a+2\right)\left(bc+a-2\right)\le0\)

\(\Leftrightarrow bc+a\le2\) (1)

Theo nguyên lý Dirichlet, trong 3 số a;b;c luôn có 2 số cùng phía so với 1

Giả sử đó là b và c \(\Rightarrow\left(b-1\right)\left(c-1\right)\ge0\Leftrightarrow bc+1\ge b+c\Rightarrow abc+a\ge ab+ac\)

\(\Rightarrow abc\ge ab+ac-a\Rightarrow abc+2\ge ab+ac-a+2\)

Do đó ta chỉ cần chứng minh: \(ab+ac-a+2\ge ab+bc+ca\)

\(\Leftrightarrow a+bc\le2\) (đúng theo (1)) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

NV
13 tháng 10 2019

\(\Leftrightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}-7\le0\)

Đặt \(P=\frac{a}{c}+\frac{c}{a}+\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}-7\)

Không mất tỉnh tổng quát, giả sử \(a\le b\le c\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\)

\(\Rightarrow ab+bc\ge b^2+ac\Rightarrow\left\{{}\begin{matrix}\frac{a}{c}+1\ge\frac{b}{c}+\frac{a}{b}\\1+\frac{c}{a}\ge\frac{b}{a}+\frac{c}{b}\end{matrix}\right.\)

\(\Rightarrow\frac{a}{c}+\frac{c}{a}+2\ge\frac{a}{b}+\frac{b}{a}+\frac{b}{c}+\frac{c}{b}\)

\(\Rightarrow P\le\frac{a}{c}+\frac{c}{a}+\frac{a}{c}+\frac{c}{a}+2-7=2\left(\frac{a}{c}+\frac{c}{a}\right)-5\)

Do \(1\le a\le c\le2\Rightarrow1\le\frac{c}{a}\le2\)

Đặt \(\frac{c}{a}=x\Rightarrow1\le x\le2\)

\(\Rightarrow P\le2\left(x+\frac{1}{x}\right)-5=\frac{2x^2-5x+2}{x}=\frac{\left(2x-1\right)\left(x-2\right)}{x}\le0\) (đpcm)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị

13 tháng 10 2019

=\(1+\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+1+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+1\)

=3+\(\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

áp dụng hệ quả của bđt côsi \(\frac{a}{b}+\frac{b}{a}\ge2\)với a,b >0 ta có BĐT cuối cùng luôn đúng

vậy .....

NV
23 tháng 5 2019

\(b^2+c^2\le a^2\Leftrightarrow\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2\le1\)

Đặt \(\left\{{}\begin{matrix}\left(\frac{b}{a}\right)^2=x\\\left(\frac{c}{a}\right)^2=y\end{matrix}\right.\) \(\Rightarrow x+y\le1\)

\(P=\left(\frac{b}{a}\right)^2+\left(\frac{c}{a}\right)^2+\left(\frac{a}{b}\right)^2+\left(\frac{a}{c}\right)^2=x+y+\frac{1}{x}+\frac{1}{y}\)

\(P=x+\frac{1}{4x}+y+\frac{1}{4y}+\frac{3}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge2\sqrt{\frac{x}{4x}}+2\sqrt{\frac{y}{4y}}+\frac{3}{4}.\frac{4}{\left(x+y\right)}\)

\(P\ge2+\frac{3}{\left(x+y\right)}\ge2+\frac{3}{1}=5\) (đpcm)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\) hay \(\left(\frac{b}{a}\right)^2=\left(\frac{c}{a}\right)^2=\frac{1}{2}\Rightarrow b=c=\frac{a}{\sqrt{2}}\)

21 tháng 8 2017

a)  Giả sử bất đẳng thức trên là đúng \(\Rightarrow a^2+b^2+c^2+\frac{3}{4}+a+b+c\ge0\)\(\Rightarrow\left(a^2+a+\frac{1}{4}\right)+\left(b^2+b+\frac{1}{4}\right)+\left(c^2+c+\frac{1}{4}\right)\ge0\)(luôn đúng với mọi a,b,c), ta có ĐPCM                            câu b tương tự nha bn!

21 tháng 8 2017

Bài 2:Áp dụng BĐT AM-GM ta có: 

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{x}{y}\cdot\frac{y}{z}\cdot\frac{z}{x}}=3\)

Khi a=b=c

Bài 3:

Áp dụng BĐT C-S dạng ENgel ta có: 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=9\)

Khi \(a=b=c=\frac{1}{3}\)

Bài 4:

Áp dụng BĐT AM-GM ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};x+z\ge2\sqrt{xz}\)

Nhân theo vế 3 BĐT trên ta có ĐPCM

Khi x=y=z

26 tháng 6 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+9\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(\ge4\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

27 tháng 6 2017

Ta có thể c/m BĐT sau vẫn đúng với bài này ((:
(\4(\sum frac{1}{a+b} \leq  \sum frac{1}{a} +frac{9}{a+b+c})/