Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy ,ta có
\(\Sigma\left(a^2+bc\right)\ge\Sigma\left(2a\sqrt{bc}\right)=2.\Sigma\left(a\sqrt{bc}\right)=2.\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
<=> \(2\left(a^2+b^2+c^2\right)\ge2\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
<=> \(\left(a^2+b^2+c^2\right)\ge\sqrt{abc}\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
Đẳng thức xảy ra <=> a = b = c
Biến đổi tương đương:
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\) (1)
\(\Leftrightarrow\dfrac{a+b}{2}\ge\dfrac{a+2\sqrt{ab}+b}{4}\)
\(\Leftrightarrow2a+2b-a-2\sqrt{ab}-b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) luôn đúng
=> (1) đúng
Dấu "=" xảy ra khi a = b
\(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ca+a^2}\)
\(=\sqrt{\frac{1}{4}\left(a-b\right)^2+\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{1}{4}\left(b-c\right)^2+\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{1}{4}\left(c-a\right)^2+\frac{3}{4}\left(c+a\right)^2}\)
\(\ge\sqrt{\frac{3}{4}\left(a+b\right)^2}+\sqrt{\frac{3}{4}\left(b+c\right)^2}+\sqrt{\frac{3}{4}\left(c+a\right)^2}\)
\(=\sqrt{3}\left(a+b+c\right)\)
Ta có bất đẳng thức phụ sau
\(a^2+ab+b^2\ge\frac{3}{4}.\left(a+b\right)^2\) (Chứng minh thì biến đổi tương đương là được)
Ta có :
\(\Sigma\sqrt{a^2+ab+b^2}\ge\Sigma\sqrt{\dfrac{3}{4}\left(a+b\right)^2}=\sqrt{3}.\Sigma\dfrac{a+b}{2}=\sqrt{3}\left(a+b+c\right)\)
Đẳng thức xảy ra <=> a = b = c
Đề sai kìa bạn
Thử với giá trị nhỏ nhất :
\(\sqrt{5.0+4}+\sqrt{5.0+4}+\sqrt{5.0+4}=2+2+2+=6< 7\)
Chưa nhìn cũng biết câu 2 sai lun
2, a, \(a+\dfrac{1}{a}\ge2\)
\(\Leftrightarrow\dfrac{a^2+1}{a}\ge2\)
\(\Rightarrow a^2-2a+1\ge0\left(a>0\right)\)
\(\Leftrightarrow\left(a-1\right)^2\ge0\)( là đt đúng vs mọi a)
vậy...................
Câu 1:
\(M=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}}\)
\(=\sqrt{4+\sqrt{5\sqrt{3}+25-5\sqrt{3}}}\)
\(=\sqrt{4+5}=3\)
\(M=\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}\)
\(=\sqrt{5-\sqrt{3-2\sqrt{5}+3}}\)
\(=\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\sqrt{5-\sqrt{5}+1}=\sqrt{6-\sqrt{5}}\)
Dự đoán dấu "=" xảy ra khi \(a=b=c=2\)
Chiều của BĐT là \(\le\)mà lại xuất hiện căn bậc hai nên ta sẽ nghĩ đến chuyện áp dụng BĐT Cô-si theo đánh giá từ TBN -> TBC
Ta cần tách \(\sqrt{a+2}=\sqrt{\frac{1}{k}.k\left(a+2\right)}\)Sao cho khi áp dụng Cô-si đảm bảo dấu "=" xảy ra khi \(a=2\)
Đồng thời, dấu "=" cũng xảy ra khi \(k=a+2\)hay \(k=2+2=4\)
Như vậy ta sẽ tách như sau: \(\sqrt{a+2}=\sqrt{\frac{1}{4}.4\left(a+2\right)}\le\sqrt{\frac{1}{4}}.\frac{4+a+2}{2}=\frac{1}{2}.\frac{a+6}{2}=\frac{a+6}{4}\)
Tương tự, ta có \(\sqrt{b+2}\le\frac{b+6}{4}\)và \(\sqrt{c+2}\le\frac{c+6}{4}\)
Vậy ta có \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le\frac{a+6+b+6+c+6}{4}=\frac{\left(a+b+c\right)+18}{4}=\frac{6+18}{4}=6\)(vỉ \(a+b+c=6\)) \(\Leftrightarrow\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le6\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4=a+2\\4=b+2\\4=c+2\end{cases}}\Leftrightarrow a=b=c=2\)
sorry, mình sẽ ghi lại đề:
\(a,b,c>0\)thỏa mãn \(a+b+c=6\)
CMR: \(\sqrt{a+2}+\sqrt{b+2}+\sqrt{c+2}\le6\)