\(a+b+c=\frac{3}{2}\)

Tính: \(a^2+b^2+c^2=?\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2019

\(VT=\frac{a^4}{a^3b}+\frac{b^4}{b^3c}+\frac{c^4}{c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^3b+b^3c+c^3a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{1}{3}\left(a^2+b^2+c^2\right)^2}=3\)

\(VP=\frac{9}{a+b+c}=\frac{\left(a^2+b^2+c^2\right)^2}{a+b+c}\le a+b+c\le3\) ( \(3=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow\)\(a+b+c\le3\) ) 

\(\Rightarrow\)\(VT\ge VP\) ( đpcm ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=1\)

2 tháng 7 2019

này bạn ơi VP làm sao mà bé hơn 3 đc z ? 

9 tháng 8 2019

mn ơi giú e

7 tháng 9 2016

câu a,mình ko biết nhưng câu b bạn cộng 1+b cho số hạng đầu áp dụng cô si,các số hạng khác tương tự rồi cộng vế theo vế,ta có điều phải c/m

7 tháng 9 2016

Bạn nói rõ hơn được không???

1 tháng 9 2017

Ta có \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)

Ta lại có \(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=1\)(1)

Mà \(\frac{2xy}{ab}+\frac{2yz}{bc}+\frac{2xz}{ac}=\frac{2cxy+2ayz+2bxz}{abc}=\frac{2\left(ayz+cxy+bxz\right)}{abc}=0\)(2)

Từ (1) ; (2) \(\Rightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)

4 tháng 9 2017

cảm ơn bạn nhé

AH
Akai Haruma
Giáo viên
17 tháng 2 2017

Lời giải:

Trước tiên, ta sẽ CM bất đẳng thức sau:\(P\geq \frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)\((\star)\)

Thật vậy: BĐT tương đương với :

\(a^2\left (\frac{1}{b+c}-\frac{1}{a+b} \right )+b^2\left ( \frac{1}{c+a}-\frac{1}{b+c} \right )+c^2\left ( \frac{1}{a+b}-\frac{1}{a+c} \right )\geq 0\)

\(\Leftrightarrow a^2(a^2-c^2)+b^2(b^2-a^2)+c^2(c^2-b^2)\geq 0\)

\(\Leftrightarrow (a^2-b^2)^2+(b^2-c^2)^2+(c^2-a^2)^2\geq 0\) (luôn đúng)

BĐT \((\star)\) được chứng minh .

Giờ ta chỉ cần tìm min của \(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)

Để ý rằng \(A-\left(\frac{b^2}{a+b}+\frac{c^2}{c+a}+\frac{a^2}{c+a}\right)=\sum \left(\frac{a^2-b^2}{a+b}\right)=a-b+b-c+c-a=0\)

\(\Rightarrow 2A=\frac{a^2+b^2}{a+b}+\frac{b^2+c^2}{b+c}+\frac{c^2+a^2}{c+a}\). Sử dụng Cauchy-Schwarz:

\(2A\geq \frac{(\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2})^2}{2(a+b+c)}=\frac{1008}{a+b+c}\)

Sử dụng AM_GM: \(\sqrt{2016}=\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\geq \frac{a+b}{\sqrt{2}}+\frac{b+c}{\sqrt{2}}+\frac{c+a}{\sqrt{2}}\)

\(\Leftrightarrow a+b+c\leq 12\sqrt{7}\) suy ra \(A\geq 6\sqrt{7}\) suy ra \(P_{\min}=6\sqrt{7}\)

Dấu bằng xảy ra khi \(a=b=c=4\sqrt{7}\)

19 tháng 2 2017

huhu , em tính giải bài này mà chị đã giải trước em rồi :(