\(a,b,c,d\in R^+\) thỏa mãn \(abc+bcd+cda+dab=1\).

<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2019

s ko tag t :vvvv

Do vai trò của a, b, c như nhau nên ta dự đoán dấu đẳng thức xảy ra tại a = b = c = kd, với k là số dương

Khi đó áp dụng BĐT Cauchy cho 3 số dương ta đc

\(\frac{1}{k^2}\left(a^3+b^3+c^2\right)\ge\frac{3abc}{k^2}\\ \frac{a^3}{k^3}+\frac{b^3}{k^3}+d^3\ge\frac{2abd}{k^2}\\ \frac{b^3}{k^3}+\frac{b^3}{k^3}+d^3\ge\frac{3abcd}{k^2}\\ \frac{c^3}{k^3}+\frac{a^3}{k^3}\ge\frac{3cad}{k^2}\)

Cộng hai vế các BĐT trên ta đc:

\(\left(\frac{1}{k^2}+\frac{2}{k^3}\right)\left(a^3+b^3+c^2\right)+3d^3\ge\frac{3\left(abc+abd+bcd+cad\right)}{k^2}=\frac{3}{k^2}\)

Hay \(\left(\frac{3}{k^2}+\frac{6}{k^3}\right)\left(a^3+b^3+c^2\right)+9d^3\ge\frac{9}{k^2}\)

Ta cần tìm k để \(\frac{3}{k^2}+\frac{6}{k^3}=4\Leftrightarrow4k^3-3k-6=0\) và ta chọn k là số dương

Đặt \(k=\frac{1}{2}\left(x+\frac{1}{x}\right)^2\) thay vào phương trình trên và biến đổi ta thu đc

\(x^6-12x^3+1=0\)

Giải phương trình này ta đc \(x=\sqrt[3]{6\pm\sqrt{35}}\), để ý là \(\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)=1\)

nên ta tính đc \(k=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}\)

Do đó ta tính đc min của P là \(\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)

Đẳng thức xảy ra khi và chỉ khi a = b = c = \(\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}.d>0\)

4 tháng 12 2019

nho ko nham la de thi khtn

ta có

\(abc+bcd+cda+dab=1\Leftrightarrow abc+d\left(\right.a+b+c\left.\right)=1\)

biểu thức

\(P=4\left(\right.a^3+b^3+c^3\left.\right)+9d^3\)

ta có

\(a^3+b^3+c^3\geq3abc\Rightarrow4\left(\right.a^3+b^3+c^3\left.\right)\geq12abc\)

\(P\geq12abc+9d^3\left(\right.1\left.\right)\)

từ trên ta có

\(abc+d\left(\right.a+b+c\left.\right)=1\)

Nếu \(d\) lớn thì \(a b c\) nhỏ ⇒ vế phải (1) lớn

Nếu \(d\) nhỏ thì \(a b c \approx 1\) ⇒ khi đó

\(P\approx12\cdot1+0=12\)

Vậy

giá trị nhỏ nhất của \(P\)

\(min⁡P=12\)

đạt được khi \(a = b = c = 1 , d \rightarrow 0^{+}\).

do đó

\(12\)

NV
1 tháng 9

Về cơ bản thì bài này ko giải được

Theo kĩ thuật cân bằng hệ số AM-GM:

Gọi x là 1 hằng số dương nào đó, ta có:

\(a^3+b^3+x^3.d^3\ge3x.abd\)

Tương tự thì:

\(a^3+c^3+x^3.d^3\ge3x.acd\)

\(b^3+c^3+x^3.d^3\ge3x.bcd\)

Cộng vế:

\(2\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x.\left(bcd+cda+abd\right)\)

Đồng thời: \(x.\left(a^3+b^3+c^3\right)\ge3x.abc\)

Cộng vế:

\(\left(x+2\right)\left(a^3+b^3+c^3\right)+3x^3.d^3\ge3x\)

So sánh với biểu thức P thì ta cần tìm x sao cho:

\(\frac{x+2}{4}=\frac{3x^3}{9}\Rightarrow4x^3-3x-6=0\)

Đây là 1 pt ko thể giải được (ra 1 kết quả x đủ đẹp)

6 tháng 11 2017

Chuyên KHTN 2014 

bài này thuộc hàng cân = hệ số khủng 

21 tháng 8 2020

Do vai trò của a, b, c như nhau nên ta có thể dự đoán dấu bằng xảy ra tại \(a=b=c=dk\) với k dương

Áp dụng bất đẳng thức Cauchy cho các bộ ba số dương ta được

\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)(*) ; \(\frac{a^3}{k^3}+\frac{b^3}{k^3}+d^3\ge\frac{3adb}{k^2}\)(**) ; \(\frac{b^3}{k^3}+\frac{c^3}{k^3}+d^3\ge\frac{3bcd}{k^2}\)(***) ;\(\frac{c^3}{k^3}+\frac{a^3}{k^3}+d^3\ge\frac{3cda}{k^2}\)(****)

Cộng theo vế 4 bất đẳng thức (*), (**), (***), (****), ta được: \(\left(\frac{1}{k^2}+\frac{2}{k^3}\right)\left(a^3+b^3+c^3\right)+3d^3\ge\frac{3\left(abc+bcd+cda+dab\right)}{k^2}=\frac{3}{k^2}\)

Hay \(\left(\frac{3}{k^2}+\frac{6}{k^3}\right)\left(a^3+b^3+c^3\right)+9d^3\ge\frac{9}{k^2}\)

Ta cần tìm k để \(\frac{3}{k^2}+\frac{6}{k^3}=4\Leftrightarrow4k^3-3k-6=0\)và ta chọn k là số dương

Đặt \(k=\frac{1}{2}\left(x+\frac{1}{x}\right)^2\)thay vào phương trình trên và biến đổi ta thu được \(x^6-12x^3+1=0\)

Giải phương trình này ta được \(x=\sqrt[3]{6\pm\sqrt{35}}\), để ý \(\left(6+\sqrt{35}\right)\left(6-\sqrt{35}\right)=1\)nên ta tính được \(k=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}\)

Do đó ta tính được giá trị nhỏ nhất của P là \(\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}}{2}d\)

30 tháng 5 2017

Giải:

Trước hết ta chứng minh \(\forall x,y,z\ge0\) ta có: \(x^3+y^3+z^3\ge3xyz\left(1\right)\)

Do vai trò \(a,b,c\) như nhau nên giả sử \(a=b=c=kd\)

Khi đó áp dụng \(\left(1\right)\) ta có:

\(\frac{1}{k^2}\left(a^3+b^3+c^3\right)\ge\frac{3abc}{k^2}\)

\(d^3+\frac{a^3}{k^3}+\frac{b^3}{k^3}\ge\frac{3dab}{k^2}\)

\(d^3+\frac{b^3}{k^3}+\frac{c^3}{k^3}\ge\frac{3bdc}{k^2}\)

\(d^3+\frac{c^3}{k^3}+\frac{a^3}{k^3}\ge\frac{3dca}{k^2}\)

\(\Rightarrow3d^3+\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{3}{k^2}\left(abc+bcd+cda+dab\right)\)

\(\Rightarrow9d^3+3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)\left(a^3+b^3+c^3\right)\ge\frac{9}{k^2}.\)

Vậy ta tìm \(k\) thỏa mãn \(\Rightarrow3\left(\frac{2}{k^3}+\frac{1}{k^2}\right)=4\Rightarrow4k^3-3k-6=0\)

Đặt \(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^2\) ta có:

\(k=\frac{1}{2}\left(a+\frac{1}{a}\right)^3-\frac{3}{2}\left(a+\frac{1}{a}\right)=6\)

\(\Leftrightarrow x^6-12x^3+1=0\Leftrightarrow\orbr{\begin{cases}x=\sqrt[3]{6+\sqrt{35}}\\x=\sqrt[3]{6-\sqrt{35}}\end{cases}}\)

\(\Rightarrow\left(6-\sqrt{35}\right)\left(6+\sqrt{35}\right)=1\Rightarrow k=\frac{1}{2}\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)\)

Với \(k\) xác định như trên ta tìm được:

\(P_{min}=\frac{9}{k^2}=\frac{36}{\left(\sqrt[3]{6-\sqrt{35}}+\sqrt[3]{6+\sqrt{35}}\right)^2}\)

24 tháng 5 2017

bài này mk có cách làm r` mà hơi ngu mà hơi là ko dc làm gì phải dứt khoát chờ mk tìm cách ngu hơn

27 tháng 8 2017

tuổi con HN là :

50 : ( 1 + 4 ) = 10 ( tuổi )

tuổi bố HN là :

50 - 10 = 40 ( tuổi )

hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi

ta có sơ đồ : bố : |----|----|----|

                  con : |----| hiệu 30 tuổi

tuổi con khi đó là :

 30 : ( 3 - 1 ) = 15 ( tuổi )

số năm mà bố gấp 3 tuổi con là :

 15 - 10 = 5 ( năm )

       ĐS : 5 năm

mình nha

27 tháng 8 2017

CHú bấm nhầm câu rồi hả chú em

11 tháng 7 2019

Bài 3:(dài quá,đăng từ câu):

a)Từ giả thiết suy ra \(\frac{\left(a+b+c\right)^2}{3}\ge3\Rightarrow a+b+c\ge3\)

BĐT \(\Leftrightarrow\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(ab+bc+ca\right)\left(a+b+c\right)\)

\(VT\ge3\left(a^3+b^3+c^3\right)\). Do đó ta chứng minh một BĐT chặt hơn là:

\(3\left(a^3+b^3+c^3\right)\ge ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)+3abc\)

\(\Leftrightarrow\left(a^3+b^3+c^3-3abc\right)+2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(c+b\right)+ca\left(c+a\right)\right]\) (*)

Để ý rằng theo Cô si: \(a^3+b^3+c^3\ge3abc\) (1) và

\(2\left(a^3+b^3+c^3\right)-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\ge0\) (2)

Do \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0\)

\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\). Tương tự với hai BĐT còn lại suy ra (2) đúng (3)

Từ (1) và (2) và (3) suy ra (*) đúng hay ta có đpcm.

11 tháng 7 2019

Bài ngắn làm trước:

Bài 5: Dự đoán xảy ra đẳng thức khi a=1; b=2/3; c=4/3. Ta biến đổi như sau:

\(A=\left(4a^2+4\right)+\left(6b^2+\frac{8}{3}\right)+\left(3c^2+\frac{16}{3}\right)-12\)

\(\ge2\sqrt{4a^2.4}+2\sqrt{6b^2.\frac{8}{3}}+2\sqrt{3c^2.\frac{16}{3}}-12\)

\(=8\left(a+b+c\right)-12=8.3-12=12\)

Dấu "=" xảy ra khi ....

Bài này dùng wolfram alpha cho lẹ, đi thi không dùng được thì em dùng "cân bằng hệ số"

18 tháng 9 2018

\(\sqrt{2012}=\left(abc+bcd-a-d\right)+\left(cda+dab-c-b\right)\)

\(=\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\)

\(\Rightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(c+b\right)\left(ad-1\right)\right]^2\)

\(\le\left[\left(bc-1\right)^2+\left(c+b\right)^2\right]\left[\left(a+d\right)^2+\left(ad-1\right)^2\right]\)

\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

12 tháng 12 2017

Ta có:

\(\sqrt{2012}=abc+bcd+cda+dab-a-b-c-d=\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\)

\(\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(ad-1\right)\left(b+c\right)\right]^2\)

\(\le\left[\left(bc-1\right)^2+\left(b+c\right)^2\right]\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]\)

\(=\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\left(d^2+1\right)\)

12 tháng 12 2017

\(GT\Leftrightarrow2012=\left[\left(bc-1\right)\left(a+d\right)+\left(a+c\right)\left(ad-1\right)\right]^2\le\left[\left(bc-1\right)^2+\left(b+c^2\right)\right]\)

\(\left[\left(ad-1\right)^2+\left(a+d\right)^2\right]=\left(b^2+1\right)\left(c^2+1\right)\left(a^2+1\right)\left(d^2+1\right)\)

P/s: Mình không chắc đâu ! Tham khảo nha!

20 tháng 11 2017

Đặt A là vế trái của BĐT cần chứng minh và ký hiệu m là số bé nhất trong bốn số có ở mẫu của A.Như vậy \(m\ge abcd+1\)

\(A\le\frac{a}{m}+\frac{b}{m}+\frac{c}{m}+\frac{d}{m}=\frac{a+b+c+d}{m}\le\frac{a+b+c+d}{1+abcd}\)

Vì \(a,b,c,d\in\left[0,1\right]\)nên

\(a+b\le1+ab;c+d\le1+cd;ab+cd\le1+abcd\)

\(\Rightarrow a+b+c+d\le3+abcd\)

vì thế \(A\le\frac{3+abcd}{1+abcd}\le3\)

Vậy Max là 3

20 tháng 11 2017

có ai có cách giải dễ hiểu hơn ko? bn trên lm như vậy cx đc r nhưng trình bày chưa đc!