Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{b^2}{d^2}\)
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2}{d^2}\)
DO đó: \(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{a^2+b^2}{c^2+d^2}\)
a) => a/c=b/d
=>(a/c)^2 = (b/d)^2
= a^2 - b^2/ c^2-d^2 = ab/cd
điều PCM
Tử a/b=c/d suy ra : a/c=b/d = ab/cd (1) hoặc a^2/c^2=b^2/d^2
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
a^2/c^2=b^2/d^2 = a^2-b^2/c^2-d^2 (2)
Từ (1) và (2) ta suy ra : ab/cd = a^2-b^2/c^2-d^2
a)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\) (1).
\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right).\)
c)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2a}{2c}=\frac{5b}{5d}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a-5b}{2c-5d}\) (1).
\(\frac{2a}{2c}=\frac{5b}{5d}=\frac{2a+5b}{2c+5d}\) (2).
Từ (1) và (2) \(\Rightarrow\frac{2a-5b}{2c-5d}=\frac{2a+5b}{2c+5d}.\)
\(\Rightarrow\frac{2a-5b}{2a+5b}=\frac{2c-5d}{2c+5d}\left(đpcm\right).\)
Chúc bạn học tốt!
a) Do \(\frac{a}{b}=\frac{c}{d}\)nên \(\frac{a}{c}=\frac{b}{d}\)
Đặt \(\frac{a}{c}=\frac{b}{d}=k\)\(\Rightarrow\frac{a}{c}\times\frac{b}{d}=\frac{ab}{cd}=k^2\)(1)
Mặt khác: \(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=k^2\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=k^2\)
Áp dụng tính chất tỉ lệ thức ta có:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}=k^2\)(2)
Từ (1);(2) ta được:\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(=k^2\right)\)
b) Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=k\Rightarrow\left(\frac{a+b}{c+d}\right)^2=k^2\) (3) {dựa trên câu a đã có \(\frac{a}{c}=\frac{b}{d}=k\)}
Mặt khác:\(\frac{a}{c}=\frac{b}{d}=k\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=k^2\)\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=k^2\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=k^2\) (4)
Từ (3);(4) ta được: \(\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(=k^2\right)\)